
World Wide Web (2016) 19:653–677
DOI 10.1007/s11280-015-0351-3

Efficient moving k nearest neighbor queries over line
segment objects

Yu Gu1 ·Hui Zhang1 ·Zhigang Wang1 ·Ge Yu1

Received: 8 April 2014 / Revised: 15 March 2015 /
Accepted: 20 April 2015 / Published online: 5 May 2015
© Springer Science+Business Media New York 2015

Abstract The growing need for location based services motivates the moving k nearest
neighbor query (MkNN), which requires to find the k nearest neighbors of a moving query
point continuously. In most existing solutions, data objects are abstracted as points. How-
ever, lots of real-world data objects, such as roads, rivers or pipelines, should be reasonably
modeled as line segments or polyline segments. In this paper, we present LV*-Diagram to
handle MkNN queries over line segment data objects. LV*-Diagram dynamically constructs
a safe region. The query results remain unchanged if the query point is in the safe region,
and hence, the computation cost of the server is greatly reduced. Experimental results show
that our approach significantly outperforms the baseline method w.r.t. CPU load, I/O, and
communication costs.

Keywords k nearest neighbor · Line segments · Continuous queries · Spatial queries

1 Introduction

The popularization of GPS-equipped mobile devices and web services have motivated vari-
ous queries and analysis over spatial data [15, 21]. Among these, a typical class of queries

� Yu Gu
guyu@ise.neu.edu.cn

Hui Zhang
zhanghui@ise.neu.edu.cn

Zhigang Wang
wangzhigang@ise.neu.edu.cn

Ge Yu
yuge@ise.neu.edu.cn

1 Northeastern University, Shenyang, People’s Republic of China

mailto:guyu@ise.neu.edu.cn
mailto:zhanghui@ise.neu.edu.cn
mailto:wangzhigang@ise.neu.edu.cn
mailto:yuge@ise.neu.edu.cn

654 World Wide Web (2016) 19:653–677

called the Moving k Nearest Neighbor (MkNN) query [16, 27] have been widely stud-
ied, where a moving point continuously issues queries to find its k nearest neighbors. In
particular, the Moving k Nearest Neighbor (MkNN) query are regarded as the most typi-
cal query type for location based services. For example, a tourist walking in a town looks
for the nearest hotels, or a driver desired to continuously seek the nearest gas station.
Essentially, MkNN queries are location-based continuous spatial queries, where the query
results may vary depending on the current location of the query point due to its moving
nature.

Generally, such applications are implemented by a Client/Server architecture, where the
mobile devices simply issue queries and receive results, while the server focuses on the
computation of results. Typically, users expect a real-time response, which raises great chal-
lenges in terms of the computation capacity of the server and the communication efficiency.
Therefore, existing work on MkNNmainly centers on optimization techniques to reduce the
server load and communication cost. A straightforward solution to process MkNN queries
is the sampling-based approach [23], in which an MkNN query is processed as a sequence
of kNN sub-queries at sampled locations. In order to provide continuous and correct query
results, a high sampling rate is required, which exacerbates the load on both the server and
the communication channel.

To overcome the shortcomings of sampling-based approaches, the safe-region-based
schemes have been intensively investigated [18, 25]. As long as the query point stays in a
safe region, the results remain unchanged. Thus, a new query is issued only when the query
point exits the current safe region (i.e., the query results may change). safe-region-based
solutions can provide accurate results without the frequent sampling, and hence reduce the
load on both servers and communication channels. Additionally, the V*-Diagram [18] can
compute the safe regions incrementally with local information, which further alleviates the
server load.

Although a lot of efforts have been devoted to the efficient MkNN query processing,
most existing methods abstract the data object as a point in the space. However, this abstrac-
tion may not be reasonable in real world where data objects could be roads, rivers, pipelines,
etc. In such cases, data objects should be properly modeled as line segments or polyline
segments instead of points. Also, compared to points, line segments can be more properly
leveraged to approximately represent some objects with a certain depth in scenarios such
as buildings, islands, etc. Note that in traditional spatial databases, line segments have been
highly recognized as fundamental spatial information representations and kNN queries over
line segments objects can also be handled using R-tree and its variants. Similarly, com-
pared to such snap-shot queries, the (MkNN) queries can better push the answers to users
in a more real-time manner for better pre-warning or decision supports. For example, for
a wild explorer, continuously monitoring the nearest exiting roads or the nearest rivers can
be helpful to his/her safety. Also, in a military exercise, moving soldiers need to keep being
aware of the nearest trenches or shielding walls for quick defence. In these scenarios, the
(MkNN) queries over line segments-like objects are preferred while the traditional snap-shot
solutions are quite inefficient for the continuous query demands.

In this paper, we focus on the problem of LMkNN (line segment oriented moving k
nearest neighbor) query with no predefined query trajectory. Specifically, LMkNN query
continuously evaluates order-sensitive k nearest line segment (or poly line segment) neigh-
bors while the query point moves freely in space, and returns to the user once a different
kNN result is detected. Here, order-sensitive means we return a kNN sequence with the
objects ordered instead of a simple kNN set, and thus different orders in the same kNN set
will lead to different kNN results.

World Wide Web (2016) 19:653–677 655

Our basic idea is inspired by V*-Diagram, the state-of-the-art method for the MkNN
query with no predefined query trajectory in space. V*-Diagram is a safe region based
technique. Its integrated safe region (ISR) is formed by two types of regions, the safe region
w.r.t. a data point and the fixed-rank region(FRR). Our work is not a trivial extension of
V*-Diagram because our work requires exploiting geometric properties entailed by line
segments and polyline segments, which bring in significant difficulties in defining the safe
regions and judging whether an object is in ISR. Specifically, constructing the line segment
oriented safe region and implementing MkNN searching based on such irregular region face
several typical challenges.

(i) Our fixed-rank region (FRR) is the closed region obtained by intersecting the (n - 1)
bisectors of any two adjacent line segment objects in the rank list which is different
from that in V*-Diagram. Furthermore, the whole data space is partitioned into mul-
tiple subspaces, and computing the bisector of any two objects must be distinguished
according to the distance pattern of each subspaces. There are many kinds of bisec-
tors in different subspaces like perpendicular bi-sector, parabola and angle bisector.
Furthermore, the integrated safe-region is also different. Because the safe region with
regard to an object in the original V*-Diagram is actually an oval. But for the case
of line segment-oriented safe region, it is much more complex due to different dis-
tance patterns. The boundary is composed of four parts, including hyperbola and oval,
which constitutes an irregular shape while V*-Diagram can be modeled as a regular
shape.

(ii) We extend our methods to construct the bisector of two poly line segments and the
corresponding safe region, to support queries over poly lines. Computing the dis-
tance from a given point to a poly line segment is more difficult than a line segment.
We need to divide the region into several sub-regions to compute the distance. For
any point p in one sub-region, the distance from p to a certain poly line is equal to
the distance away from the corresponding line segment. Compared to just comput-
ing one line segment, it needs more sophisticated geometry inference and theoretical
verification.

(iii) Furthermore, in a Cartesian coordinate system, the irregular geometric shape obtained
by our ISR is usually represented by a second-degree polynomial. It will be quite time
consuming to truly draw such safe region (or compute all the boundaries) and judge
whether an object is in the ISR or not. Therefore, we need to explore high-efficient
judgment conditions based on the geometric properties of potential boundaries to cut
down the side-effect of the irregular shape.

In this paper, we address these challenges and make the following contributions:

– To the best of our knowledge, this is the first tailored technique to handle the line seg-
ment and poly line segment oriented MkNN query with no predefined query trajectory.
We formulate two types of regions based on V*-Diagram, namely the safe region w.r.t.
a line segment and the line segment oriented fixed-rank region, to form an integrated
safe region for processing the query.

– We exploit the properties of the line segment oriented integrated safe region to reduce
the query processing cost, and obtain a highly efficient algorithm to process the line
segment oriented MkNN query.

– We perform the extensive theoretical analysis and comprehensive experimental evalu-
ation on the proposed algorithm. The results show that our algorithm outperforms the
baseline algorithm by up to two orders of magnitude.

656 World Wide Web (2016) 19:653–677

The remainder of this paper is organized as follows: We review related studies in
Section 2. In Section 3, we provide preliminaries of the study about the V*-diagram and the
Line Segment Divided Region. In Section 4, we introduce the LV*-Diagram with line seg-
ment oriented fixed-rank region, line segment oriented IRU, integrated safe region. And we
also extend the problem to poly line segments. We present the algorithm to process LMkNN
query in Section 5. We report the experimental evaluation in Section 6 and conclude the
paper in Section 7.

2 Related work

MkNN is evolved from the kNN problem where we want to acquire the k nearest neighbors
of a given query point. Many kNN algorithms were proposed based on spatial hierarchical
structures, such as R-tree [9], which maintains the distance from the query point to all data
objects. And it can be traversed by a depth-first (DF-kNN) [22] or a best-first (BF-kNN)
[11] manner to find the kNNs.

For MkNN, the query results must be responded continuously with the movement of
a query point. And there are two different research streams. The first are sampling-based
approaches [23], which are suitable for general scenarios but inefficient in terms of the com-
putation load, I/O cost and communication cost. The reason is that they lack built-in support
for the incremental computation for moving objects. On the other hand, safe region-based
approaches are widely used for MkNN queries, which provides continuous answers and
reduces the processing and communication costs. Particularly, the Voronoi Diagram (VD)
[13, 20] is a classical solution. The k-version of VD is called kVD which can be used to find
the kNNs. However, kVD must pre-compute all kVD cells, which incurs expensive com-
putation and storage costs. Although extensions like TPkNN [24] and CkNN [25] support
kNN processing with local information, the query points are limited to given linear trajec-
tories. Furthermore, RIS-kNN [27] computes kVD cells locally based on a spatial index,
which avoids the pre-computation. Note that the aforementioned solutions are not adaptive
to the variable k value.

As an improved variant, the Incremental Rank Updates (IRU) method [14] can incre-
mentally compute a neighboring nVD cell from the current cell. By leveraging the bisector
between two rank-adjacent objects, IRU acquires the new ranking by only swapping the two
objects of its bisector, which avoids computing the whole nVD. Nevertheless, the updating
cost of IRU is still substantial because it must access global data objects to guarantee that
the update is safe and incremental. To address this issue, Nutanong et al. proposed the V*-
Diagram [18] algorithm to obtain an approximate safe region with only a certain number of
data objects. Intrinsically, V*-Diagram introduces x auxiliary data objects and computes a
fixed-rank region (FRR) including the (k + x)NNs of the given query point q, which guar-
antees the effectiveness of kNNs as long as the query point moves in the safe region. To the
best of our knowledge, the efficient approximation of V*-Diagram has been widely used
to spatial network problems [19]. However, these techniques only focus on handling data
objects modeled as points instead of line segments.

In addition, some studies focus on the moving or continuous nearest neighbor queries
in obstructed spaces. Gao et al. [5, 7] discuss the continuous obstructed kNN assuming the
query point q moves on a given trajectory. By dividing the trajectory into different safe
intervals, the obstructed kNN results can be continuously responded. To deal with obstacles,
a novel concept of control points is proposed. Li et al. [17] study the problem of evaluat-
ing moving obstructed kNN in a space without any trajectories given. Effective safe-region

World Wide Web (2016) 19:653–677 657

based methods are proposed to avoid redundant computation. In the space blocked by obsta-
cles, another category of queries is visible kNN queries. Totally different from obstructed
queries, visible kNN queries only consider k nearest data objects which are not blocked
by any obstacles instead of calculating obstacle-avoiding distance. In [6] and [8], the con-
tinuous visible k nearest neighbor (CVNN) queries are formulated and efficient speed up
algorithms for CVNN query processing are proposed, assuming that both data points and
obstacles are indexed by R-trees. There are also some studies on MkNN variants. For exam-
ple, Aly et al. [2] show how queries with two kNN predicates can be processed; Ali et al.[1]
explore the probabilistic moving nearest neighbor queries; Hu et al. [12] investigate the
MkNN over moving objects. None of these solutions aim at our proposed problem.

In spatial databases, line segments are recognized as fundamental spatial information
representations. kNN queries over line segments objects can be processed using R-tree and
its variants [3, 9] based on pruning methods. For the snap-shot kNN queries, the technique is
efficient and we also leverage such method once the kNN result needs to be updated. When
we consider continuous kNNmaintenance, extending TPkNN [25] for points to adapt to line
segment data may be theoretically feasible, but the trajectory of the moving query point must
be assumed to be predefined. In addition, some studies focus on Voronoi diagram analysis
and construction over line segment data [10], while computing a k-order Voronoi diagram
(k>1) for line segment data will incur tremendous costs which makes it not applicable
in the real applications especially when we require the kNN result to be order sensitive
(i.e., ordered k-order diagram). Besides, there exists the relative scheme [4] for NN query
devoting to the case when the query objects are modeled as line segments and the data
objects are points while our setting represents the data objects as line segments or poly
line segments. For the obstructed or visible MkNN queries [6, 7], obstacles are usually
represented by line segments while data objects are modeled as line segments in our work.
In conclusion, despite the bulk of NN query related literature, no existing solutions are
efficient in our problem because we aim to continuously evaluate order-sensitive k nearest
line segment neighbors without any trajectory assumption of the query point.

3 Preliminaries

3.1 V*-diagram

Our basic idea is inspired by V*-Diagram [18], the state-of-the-art method for the MkNN
query with no predefined query trajectory in space.The key steps are introduced as
follows.

Step 1. Let qc be the current position of the query object q and z be its (k + x)th nearest
data object. Then a known region is computed as a centered at qc with its radius being
dist (qc, z). The safe region w.r.t. a data object p, S (qc, p, z), is computed as a region
that, when q stays in the region, p is nearer to q than any data object p′ outside the known
region. The final equation of S (qc, p, z) is computed as dist

(
q ′, p

) + dist
(
qc, q

′) ≤
dist (qc, z). which can be proved to satisfy the property dist

(
q ′, p

) ≤ dist
(
q ′, p′).

According to the definition, the safe region w.r.t. p is essentially an ellipse in the
Euclidean space where qc and p are its two foci and dist (qc, z) is its major axis length.
Furthermore, as long as q is inside the intersection of the safe regions w.r.t. the k nearest
neighbors of qc, it can guarantee that any data object p′ outside the known region cannot
be closer to q than any of those k data objects.

658 World Wide Web (2016) 19:653–677

Before introducing step 2, we first explain the concept of fixed-rank region (FRR) and
incremental rank updates(IRU) which will be used in step 2. Fixed-rank region (FRR)
was introduced in [14]. When the query point is in this region, the ranking of the data
objects is fixed based on their distances to the query point. When all the data objects are
considered, FRR equals to an ordered kVD cell with k=n where n is the total number of
objects. Furthermore, incremental rank updates(IRU) was proposed in [14] as an efficient
technique to construct and maintain a new FRR when the ranking of the involved data
objects changes. The core idea of FRR is based on the observation that only rank-adjacent
objects can swap their ranks, and thus constructing the FRR of n objects requires at most
n-1 bisectors of the n-1 pairs of rank-adjacent objects. Specifically, by maintaining a
rank-sorted list of objects and its corresponding list of bisectors of pairs of rank-adjacent
objects (rank-adjacent bisectors), continuous monitoring of the ranking of the objects can
be implemented. Each time a bisector is crossed by the query point, the ranks of the two
corresponding objects are swapped and the list of rank-adjacent bisectors are updated
based on IRU. In V*-Diagram, the involved data points for a FFR is reduced from n to
k+x to improve the efficiency. The correctness of the kNN query result is guaranteed by
combining FFR with the concept of safe region w.r.t. a point.

Step 2. The V*-Diagram algorithm further computes FRR where the order of distances
of the (k + x) data objects to q does not change, either. Formally, the fixed-rank region
of a list Lk+x of (k + x) ranked data objects, η 〈p1, p2, . . . , pk+x〉, is defined as the
intersection of the bisectors between pi and pi+1, H (pi, pi+1), where pi is nearer than

pi+1 (i ∈ [1 . . . k + x − 1]):η < p1, p2, . . . , pk+x >= k+x−1∩
i=1

H (pi, pi+1). This region

is constructed and maintained with IRU algorithm to keep the (k + x) objects sorted
according to their distances to q.

Step 3. The intersection of the safe regions w.r.t. the k data objects and the fixed-
rank region is the Integrated Safe Region (ISR), denoted by �(qc, Lk+x). Formally,

�(qc, Lk+x) = η (Lk+x) ∩
(

k∩
i=1

S (qc, pi, z)

)
, where pi denotes the ith nearest data

object of q.

Figure 1 shows an example where k = 2 and x = 2. When the query object q is
at the location qc, a 4NN search retrieves the 4 nearest data objects η 〈p1, p3, p2, p6〉. The

Figure 1 Integrated safe region
(k=2,x=2)

World Wide Web (2016) 19:653–677 659

ellipses filled with horizontal lines and vertical lines denote S (qc, p1, p6) and S(qc, p3,

p6), respectively. Then as long as q remains in the grey region η〈p1, p3,

p2, p6〉 ∩ S (qc, p3, p6) ∩ S (qc, p1, p6), the 2NN of q will not change.

3.2 Line segment divided region

Before discussing the details of LV*-Diagram, we first introduce some fundamental con-
cepts for cases where data objects are modeled as line segments. Let q be the query point.
The ith line segment (data object) is described by si and the corresponding two endpoints
el
i and er

i . Here, we call el
i the left endpoint and er

i the right endpoint respectively. And the
Euclidean distance of two points p1 and p2 is formalized as dist (p1, p2). Then, the data
space is partitioned into three regions by two parallel lines perpendicularly to si whose per-
pendicular foots are el

i and er
i respectively. Within each region, the distance from q to si ,

can be represented by Formula (1).

dist (q, si) = min{dist (q, p) | ∀p ∈ si} (1)

Different from point-to-point distance, dist (q, si)may vary according to different spatial
relationship between q and si . An example is shown in Figure 2a. At the beginning, the
query point is at q1, dist (q, si) is the distance from q1 to el

i , the nearest endpoint of si .
When the query point moves from q1 to q2, dist (q, si) changes to the distance from q2 to
its projection on si . Then the query point moves on to q3, and now dist (q, si) is the distance
from q3 to er

i . We call the different ways to compute dist (q, si) distance patterns.
For the ease of computation in future steps, we first partition the data space into such

regions that within each region the distance pattern for any line segment does not change.
To do this, we construct two perpendicular lines (the dotted lines in Figure 2a) for si with
one crossing el

i and the other crossing er
i . In this way, the data space is partitioned into

three parts: (1) one inside region Rm
i , which is bordered by the two perpendicular lines (and

containing the line segment) and (2) two outside regions Rl
i and Rr

i , each of which is only
bordered by the line crossing el

i and er
i respectively. The two perpendicular lines are called

line segment divided lines. Within the inside region, dist (q, si) is evaluated as the distance
from q to its projection on si (we denote q’s projection on si by prj (q, si)); otherwise,
dist (q, si) is evaluated as the distance from q to the corresponding endpoint of si . For each

(a) (b)

Figure 2 The definition of distance and LDR

660 World Wide Web (2016) 19:653–677

line segment, we can do the same partitioning, and the data space is partitioned into a set of
line segment divided regions (LDR), which is formulated as follows.

Definition 1 (Line segment divided region, LDR). Given a set of line segments
{s1, s2, . . . , sn}, an LDR is an element of the set D, where

D =
n⋂

i=1

Ri, with Ri ∈ {Rm
i , Rl

i , R
r
i } (2)

As an example in Figure 2b, the grey region where the query point q locates is an LDR
computed by Rr

1

⋂
Rm
2

⋂
Rm
3

⋂
Rl
4. When the query point moves, it could possibly cross

different LDRs. Next, we aim to prove the relationship of the distance pattern with line
segment divided lines and corresponding LDRs in Lemma 1 and Theorem 1.

Lemma 1 Let q be the moving query point and s be a certain line segment. If q crosses
any line segment divided line of s, the distance pattern from q to s alternates; otherwise it
remains unchanged.

Proof (1) If q is in the inside region of s, dist (q, s) is the distance from q to its projection
on s. When q crosses any line segment divided line of s, q is in the outside region of s now.
If the distance pattern remains unchanged, the current projection is on the extension line of
s. So the distance pattern must alternate. (2) If q is in the outside region of s, dist (q, s)

is the distance from q to the nearer endpoint (denoted by e) of s. When q crosses any line
segment divided line of s, q is in the inside region of s now. The distance from q to its
projection s is smaller than dist (q, e). So the distance pattern alternates.

The converse proposition of Theorem 1 is also true. The proof is omitted.

Theorem 1 Let q be the query point in an LDR, the distance pattern from q to any line
segment does not change if q remains in the LDR.

Proof The boundaries of an LDR are made up of the line segment divided lines. According
to Lemma 1, as long as q does not cross any line segment divided line (q remains in the
LDR), the distance pattern stays unchanged.

4 The LV*-diagram

The LV*-Diagram proposed in this paper computes an approximated safe region in which
q’s kNNs (as line segments) do not change when the query point q moves. LV*-Diagram
involves two basic steps to compute the approximation: (1) compute a fixed-rank1 region
(FRR) given the (k + x)NNs of q. Within the FRR, the ranking2 of the (k + x)NNs does
not change. (2) for each of the kNNs of q, compute a safe region with regard to the line

1Fixed-rank means the rank of an object doesn’t change. It is specifically decorate a region (i.e. fixed-ranked
region) in our paper, which indicates the ranks of all the objects in such region keep fixed.
2Ranking is used to represent the sequence with the objects sorted in this paper. For example, we can say the
ranking (of s1, s2 and s3) is 〈s1, s3, s2〉.

World Wide Web (2016) 19:653–677 661

segment si . Extending this framework to accommodate line segments and poly line seg-
ments requires targeted improvements and complicated geometrical analysis. In general, the
construction models of line segment oriented FRR and the safe regions with regard to line
segments are unfolded in Sections 4.1 and 4.2 respectively.

4.1 Line segment oriented FRR & line segment oriented IRU

A line segment oriented fixed-rank region (FRR) is such a region that tries to keep the (k+x)
objects sorted according to their distances to the query point. Essentially, the line segment
oriented FRR is the closed region obtained by intersecting the n − 1 bisectors of any two
adjacent objects in the rank3 list, where n is the number of data objects in the rank list. The
line segment oriented FRR can be incrementally updated by extending the Incremental Rank
Updates (IRU) technique to adapt to the line segment objects. Specifically, when the query
point exits the current line segment oriented FRR, it must have crossed some bisector; then
we know that only the ranking of the two data objects corresponding to the crossed bisector
needs to change. The new safe region is computed by intersecting the new bisectors for the
new rank list. It is non-trivial to implement this for line segments objects.

As discussed in Section 3, the whole data space is partitioned into multiple LDRs. Com-
puting the bisector of any two objects must be distinguished according to the distance
pattern of each LDR. We denote the bisector of two data objects a and b (regardless of
points or line segments) by bisect (a, b). Figure 3a gives an example of the bisector of two
line segment data objects. The construction is given in Table 1.

Finally, bisect (s1, s2) is constructed as an irregular line by connecting all the above
curves. Furthermore, the line segment oriented FRR is obtained by intersecting all the bisec-
tors of any two rank-adjacent line segment objects. An example is depicted in Figure 3b.
The FRR with regard to line segment data objects is formally defined as follows.

Definition 2 (Fixed-Rank Region). Given an ordered list L of line segments 〈s1,
s2, . . . , sn〉, the line segment oriented fixed-rank region (FRR) of L is:

F 〈s1, s2, . . . , sn〉 =
n−1⋂

i=1

Hsisi+1 (3)

Hsisi+1 is the region where for an arbitrary point p in Euclidean space, dist (p, si) �
dist (p, si+1). F 〈s1, s2, . . . , sn〉 can be abbreviated as F 〈L〉.

To maintain the line segment oriented FRR with a given k value, we leverage the line
segment oriented IRU algorithm. The line segment oriented IRU establishes two lists: the
rank list and the rank-adjacent bisector list based on the distance from the query point to
the line segments. Once the moving query point crosses a bisector, the ranks of the two
corresponding segments are swapped and the list of rank-adjacent bisectors is updated, and
thus a new line segment oriented FRR with the new ranking is obtained.

An example is given in Figure 3b and c. The grey region is F(L). Suppose a query point
q moves from q1 to q2. In Figure 3b, q is at q1 and the ranking is 〈s1, s3, s2, s4〉, and the
corresponding list of bisectors is 〈B13, B23, B24〉. In this region, B13 and B24 are parabolas
whereas B23 is an angle bisector. In Figure 3c, q moves from q1 to q2 by crossing B24,

3The rank of an object means the object’s position in a list of objects sorted by their distances to some other
objects.

662 World Wide Web (2016) 19:653–677

(a) (b) (c)

Figure 3 Bisectors and IRU for line segments

which causes the ranks of s2 and s4 to swap. The new ranking is 〈s1, s3, s4, s2〉. The new
line segment oriented FRR constrained by 〈B13, B34, B24〉 is depicted as the grey region in
Figure 3c.

Note that an line segment oriented FRR may span across multiple LDRs. Even if the
query point may be in different LDRs, the ranking of the data objects does not change as
long as the query point is still in the line segment oriented FRR. But in the implementation,
calculation of the distance from the query point to any line segment object must conform to
the corresponding LDR.

4.2 Safe region with regard to a line segment object

The line segment oriented FRR computed in the last section guarantees that the order of the
(k + x) objects in the ranking does not change. But the line segment oriented FRR cannot
exclude such situations that some object other than the (k + x) objects could become one of
the kNNs. For example, the original ranking is 〈a, b, c〉 (with k = 2 and x = 1). When the
query point moves in F 〈a, b, c〉, the order of a, b and c is enforced, but another unknown
object d could get in and the actual ranking becomes 〈a, d, b, c〉. This possibility cannot be
identified by the line segment oriented IRU approach, since d is not explicitly maintained
in the rank list. To make sure, for example, a and b are still the 2NNs, we must further
constrain the safe region to exclude such possibilities that objects like d could replace some
object and get in the kNNs.

As extended from V*-Diagram [18], the LV*-Diagram introduces the notion of a safe
region with regard to a line segment (LSR). The LSR of a line segment sm guarantees that
if the query point q stays in this region, for any data object sn other than the (k + x)NNs,
dist (q, sm) ≤ dist (q, sn) always holds. We will then use an example to show how to
construct the LSR.

Table 1 Bisectors in different LDRs

LDR Equivalence Bisector Type Bisector

A dist (q, s1) = dist (q,w), dist (q, s2) = dist (q, y) Perpendicular bisector ab

B dist (q, s1) = dist (q,w) Parabola bc

C dist (q, s1) = dist (q, s2) Angle bisector cd

D dist (q, s1) = dist (q, x) Parabola de

E dist (q, s1) = dist (q, x), dist (q, s2) = dist (q, z) Perpendicular bisector ef

World Wide Web (2016) 19:653–677 663

Figure 4 The safe region with
regard to a line segment

In Figure 4, let qb be the position of q where the last BF-kNN is called (i.e., the
(k + x)NNs have been determined). Let line segment s be the (k + x)thNN of qb and line
segment sn be one of the kNNs of qb. We construct a Known Region, denoted by W(qb, sn),
as a disk centered at qb with the radius dist (qb, sn). So our target is to construct a region
S, as long as q ′ stays in S, we can get dist (q ′, sm) � dist (q ′, sn), where s′

n can be any
line segment not in the (k + x)NNs of qb. According to the definition of KnownRegion,
we can get for any s′

n not in the (k + x)NNs of qb, dist (qb, sm) < dsit (qb, s
′
n). So if

we can construct a region for q ′ to satisfy dist (q ′, sm) � dist (qb, sn) − dsit (qb, q
′), we

can get dist (q ′, sm) � dist (qb, s
′
n) − dsit (qb, q

′). Furthermore, according to the trian-
gle inequality, dist (qb, s

′
n) < dist (q ′, s′

n) + dsit (qb, q
′), so we can get dist (q ′, sm) �

dist (q ′, s′
n)+dsit (qb, q

′)−dist (qb, q
′) = dist (q ′, s′

n). That means the constructed region
can satisfy the desired property of LSR.

Definition 3 (Safe Region with regard to a line segment). Given a known region W(qb, sn)

and a line segment sm within W(qb, sn), the safe region with regard to sm is:

S(qb, sn, sm) = {q ′ : dist (q ′, sm) + dist (qb, q
′) � dist (qb, sn)} (4)

The safe region with regard to an object in the original V*-Diagram is actually an oval.
But for the case of LSR, the safe region is much more complex due to different distance
patterns. The boundary of an LSR is composed of four parts. Each of the two parts in the
outside regions of sm is a chunk of a corresponding oval, since in such cases, dist (q, sm) is
the distance from q to one of the endpoints of sm. Each of the two parts in the inside region
of sm is the chunk of such a trajectory that the sum of the distance to a fixed point (qb) and
a fixed line (corresponding to sm) is a constant. We will prove that for the latter case, the
trajectory is actually a parabola.

Theorem 2 For 2D Euclidean space, each of the two segments of the boundary of an LSR
in the inside region is a part of a parabola.

664 World Wide Web (2016) 19:653–677

Proof This problem is equivalent to a locus problem of points of which the sum of distances
to a fixed point and a fixed line is a constant. Suppose F is the fixed point, l is the fixed
line, and the distance from F to l is k(k � 0). We establish a rectangular coordinate with
the y-axis coincided with l and the x-axis crossing F (shown as the upper part of Figure 5).
The coordinate of F is (k, 0). Assume an arbitrary point M(x, y) and the distance from M

to l is d. We are to prove equation | MF | +d = t holds, where t is a constant (dist (qb, d)

in Figure 4). Apparently, if t < k, the locus of point M does not exist. If t � k, from
| MF | +d = t we have

√
(x − k)2 + y2+ | x |= t (5)

(1) If x � 0, equation (5)⇒ √
(x − k)2 + y2 = t−x ⇒ (x−k)2+y2 = (t−x)2, (t−x �

0) ⇒ y2 = 2(k − t)(x − k+t
2)(0 � x � t).

If t > k, the locus of point M is a section of parabola p1 whose vertex is at
D(k+t

2 , 0) and left open; if t = k, the results corresponds to line segment OF .
(2) If x < 0, the proof is similar to (1), and the corresponding parabola is p2 whose vertex

is at C(k−t
2 , 0) and right open.

The final LSR is the closed region by intersecting the above ovals and parabolas. For
each line segment in the kNNs, we can compute a corresponding LSR. If the query point
exits the LSR of any line segment, a new ranking for the (k +x)NNs should be re-evaluated
with the BF-kNN algorithm, which incurs computation overhead and communication with
the server.

4.3 Safe region with regard to a polyline segment object

Intrinsically, some real-world objects (i.e., roads) may be better modeled as polyline seg-
ments which consist of multiple consecutive line segments. In this section, we extend
our methods proposed in Sections 4.1 and 4.2 in terms of constructing the bisector of
two polyline segments and the corresponding safe region, to support queries over polyline
segments.

Before discussing the issue of bisectors, we first describe how to compute the distance
from a given point to a polyline segment. As illustrated in Figure 6a, for any polyline

(a) (b)

Figure 5 The geometrical characteristic of an LSR’s boundary in the inside region of a segment

World Wide Web (2016) 19:653–677 665

(a) (b)

Figure 6 The safe region with regard to a polyline segment

segment, we build the angel bisector of its two consecutive line segments. For example, the
polyline segment P1 constructed by line segments s1, s2 and s3, has two angel bisectors B12
and B23, which divide the data space into 3 regions. Note that all angle bisectors of poly-
line segments divide the region into several sub-regions, termed PDRs. For any point p in
one PDR, the distance from p to a certain polyline is equal to the distance away from the
corresponding line segment.

The bisector of two polylines segments can be constructed by building the bisector of its
every line segment. Figure 6a shows an example of constructing the bisector between P1
and P2. Here, PDRs are distinguished by shadows. In each PDR, we first build the bisector
between two line segments by the line segment oriented IRU method, and then integrate
these bisectors to compute the bisector between P1 and P2. The details of this process are
given in Table 2.

After that, we can construct the safe region for a polyline by decomposing it into multiple
line segments. As demonstrated in Figure 6b, suppose that qb is the location of the query
point q after invoking the BF-kNN algorithm. While, Pn and Pm denote the (k+x) nearest
neighbor and some neighbor whose distance away from q is smaller than that of Pn. First,
for common segments of Pm and Pn, we build their bisectors, B12 and B34. Obviously,
dist (qb, Pn) = dist (qb, s3). Then, the known area W(qb, Pn) can be obtained based on
dist (qb, s3). Finally, since Pm consists of s1 and s2 whose bisector B12 divides the area
into A and B. In A, the safe region of s1 is surrounded by âf , f̂ e and êd. Especially, f̂ e

is the inner segment safe region, and âf and êd are outer segment safe regions. For B, the
safe region of s2 consists of âb, b̂c and ĉd. Similarly, b̂c is the inner segment safe region

Table 2 Bisectors in different PDRs

PDR Equivalence Bisector

A dist (q, P1) = dist (q, s1), dist (q, P2) = dist (q, s4) ad

B dist (q, P1) = dist (q, s2), dist (q, P2) = dist (q, s4) de

C dist (q, P1) = dist (q, s2), dist (q, P2) = dist (q, s5) ef

D dist (q, P1) = dist (q, s3), dist (q, P2) = dist (q, s5) fg

666 World Wide Web (2016) 19:653–677

and âb and ĉd are outer segment safe regions. Note that line segment oriented FRR can be
constructed for polyline segment objects with the same techniques introduced in Section 4.1.

4.4 Integrated safe region

Now we can obtain the final safe region by intersecting the current line segment oriented
FRR (obtained in Section 4.1) of the (k + x) data objects and the LSRs with regard to the k

nearest neighbors (obtained in Section 4.2). We call the final safe region the integrated safe
region (ISR). The formal definition of ISR is given as follows, and we can prove that the
ISR is the region that satisfies the requirement for a safe region enforcing the same kNNs
for the query point. In addition, based on Sections 4.1 and 4.3. the integrated safe regions
for polyline segment objects can be constructed in the same way. We omit the details in this
section and Section 5.

Lemma 2 F 〈si , sj 〉 ∩ S(qb, sn, sj) ∩ S(qb, sn, pi) = F 〈si , sj 〉 ∩ S(qb, sn, pj)

Proof For any point p ∈ F 〈si , sj 〉, p satisfies

dist (p, si) � dist (p, sj). (6)

For any point p ∈ S(qb, sn, sj), by definition p satisfies

dist (p, sj) + dist (qb, p) � dist (qb, sn). (7)

For any point p ∈ F 〈si , sj 〉 ∩ S(qb, sn, sj), by adding (6) and (7),

dist (p, si) + dist (qb, p) � dist (qb, sn). (8)

Inequality (8) shows that giving a point p which is in F 〈si , sj 〉 ∩ S(qb, sn, sj), we can
get p ∈ S(qb, sn, si). That is F 〈si , sj 〉 ∩ S(qb, sn, sj) ⊆ S(qb, sn, si), i.e. F 〈si , sj 〉 ∩
S(qb, sn, sj) ∩ S(qb, sn, si) = F 〈si , sj 〉 ∩ S(qb, sn, sj).

Theorem 3 For k � 2, F 〈s1, s2, . . . , sk〉 ∩
(⋂k

i=1 S(qb, sn, si)
)

= F 〈s1, s2, . . . , sk〉 ∩
S(qb, sn, sk)).

The theorem can be proved by induction using Lemma 2. We omit the details here due
to limited space.

Definition 4 (Integrated Safe Region). Given a (k+x)NN list of qb and L, sn is the farthest
retrieved line segment to qb. The integrated safe region with regard to qb and L is:

I (qb, sn, si , L) = F(L) ∩ S(qb, sn, sk)) (9)

Theorem 4 The kNN query results for any point in the ISR is the same, that is the ISR is a
reliable safe region.

Proof (1) The ranking of the (k + x) line segments is fixed in region F(L), so no data
object in the ((k + 1) ∼ (k + x))NN can become one of the kNNs. (2) The result of kNNs
is fixed in S(qb, sn, si), so no data object other than the (k + x)NNs can become one of the
kNNs. To sum up, for any point in ISR, the k nearest neighbors are unchanged.

World Wide Web (2016) 19:653–677 667

Figure 7 An example of ISR

An example is given in Figure 7. There are four line segments and q1 is the current
position of the query point q. The ranking of objects at q is 〈s1, s3, s2, s4〉. Suppose k=2 and
x=2. So the final safe region is the intersection of F(〈s1, s3, s2, s4〉) and S(q1, s4, s3).

5 Algorithms

We now present the algorithms to process line segment oriented MkNN queries, which
implement the proposed LV*-Diagram. First, the procedure of constructing ISR is illustrated
in Algorithm 1.

Based on Algorithm 1, we furthermore present Algorithm 2 to handle the MkNN prob-
lems. Especially, when the query point q crosses the border of line segment oriented FRR
(line 6 ∼ 10), the ranks of the corresponding rank-adjacent objects will change. Then
the new line segment oriented FRR is re-calculated using the line segment oriented IRU
algorithm (line 7). Note that if the kthNN changes, the new Sk needs to be reconstructed
(line 8). After that, ISR is updated (line 10). Otherwise, if q crosses the border of Sk , a
new ISR must be computed by Algorithm 1 because the change of the (k + x)NNs is
unpredictable.

668 World Wide Web (2016) 19:653–677

An example to explain our algorithm is given in Figure 8. The initial location of the
query point q is at q1 in Figure 7, and now the 4NNs is 〈s1, s3, s2, s4〉 and the ISR is
F 〈s1, s3, s2, s4〉 ∩ S(q1, s4, s3), given k = 2 and x = 2. In Figure 8b, q crosses B24 at γ1.
The ranks of s2 and s4 are swapped, and the list L becomes 〈s1, s3, s4, s2〉, which causes the
F 〈L〉 and ISR to change. The ISR becomes F 〈s1, s3, s4, s2〉 ∩ S(q1, s4, s3). In Figure 8b,
q crosses S(q1, s4, s3) at γ2. Algorithm 1 is called to re-calculate the safe region. The new
(k + x)NNs are 〈s1, s3, s4, s2〉 and the corresponding ISR is F 〈s1, s3, s4, s2〉 ∩ S(γ2, s2, s3).

The performance of line segment MkNN is now evaluated supposing that the data objects
are uniformly distributed. According to the former analysis in Section 5, when a query
point crosses the boundary of Sk , BF-kNN will be triggered. So the frequency of calling
BF-kNN, f , is inversely proportional to the length of the trajectory from a query point to
the boundary of the safe region. In the worst case, q moves in a straight line, and f is
inversely proportional to dist (qb, qe), where qb is the original location of q and qe is the
next location of q. As shown in Figure 4, f is inverse to dist (qb, q

′), where dist (qb, q
′) =

dist (qb, d) − dist (q ′, d). According to [18, 26], the distance from qb to the kthNN is

(a) (b)

Figure 8 An example of Algorithm 2

World Wide Web (2016) 19:653–677 669

Dk ≈ 2
CV

(
1 −

√
1 − (k

N
)
1
d

)
, where CV =

√
π

[�(d/2+1)] 1d
, �(x + 1) = x · �(x), �(x) = 1.

For the two-dimension case, i.e., d=2, CV = √
π . So dist (qb, q

′) can be represented as

DK ≈ 2√
π

(

1 −
√

1 −
√

k
N

)

− 2√
π

(

1 −
√

1 −
√

k+x
N

)

. Because f is the inverse function

of dist (qb, qe). So, O (f) = O
(
1/

(√
1 − √

k/n − √
1 − √

(k + x) /n
))

. We sim-

plify O (f) as 1√
1−√

k/n−
√

1−√
(k+x)/n

=
√

1−√
k/n+

√
1−√

(k+x)/n√
(k+x)/n−√

k/n
≤ 2

√
1−√

k/n√
(k+x)/n−√

k/n
≤

2√
(k+x)/n−√

k/n
= 2

√
(k+x)/n+√

k/n
(k+x)/n−k/n

= 2
√

(k+x)/n+√
k/n

x/n
≤ 4

√
(k+x)/n
x/n

. So, O (f) is

O
(√

(k+x)/n
x/n

)
. Generally speaking, the value of x and k are comparable. Thus, (k + x) is

much smaller than xk. So, O (f) equals O

(√
kn
x

)
.

Communication cost When the client side needs to ask the new kNN result, it will request
the kNN set from the server. So, the communication cost is incurred when the server returns

new result sets. The update frequency of LMkNN is O

(√
kn
x

)
and the number of the result

is k + x. So, the Communication cost is O

(
(k + x) ∗

√
kn
x

)
.

I/O cost Every time the kNN set is to be updated, the server needs to compute the new
result set, which consists of the top (k + x)NNs. Therefore, based on R-tree structure,
O (log n + k + x) time is needed on average for each BF-kNN searching. So, the whole I/O

cost measured by the data object access is

(
(log n + k + x) ∗

√
kn
x

)
. Note that if we mea-

sure the I/O costs with disk page, because the localities between consecutive kNN searching
exist, fewer I/O costs in term of page access number will be incurred.

CPU cost We analyze the CPU cost which is incurred when validating kNN sets in the
client side including judging whether the query point is in the safe-region or the line segment
oriented FRR border is crossed. So, our method should maintain the LSR with O (1) time
and scan a list of line segments sequentially, which requires O (k + x) time to maintain the
fixed rank region.

Space cost For FRR, we use O (k + x) space to maintain the rank list and storage the
result set. For LSR, we can use the definition of LSR to quickly judge whether an object is
in it to avoid storing the real boundaries. So, the space cost is O (k + x).

One alternative method of our problem is to utilize V*-Diagram based on the combina-
tion of three key points, i.e., the leftmost point l, center c, and rightmost point r of a line
segment s. For each kNN updates, the shortest distance of dist (q, l), dist (q, c), dist (q, r)

can be chosen as the approximation of dist (q, s). However, because the update of kNN
is only executed when the object leaves the previous ISR, and the shortest distance of
dist (q, l), dist (q, c), dist (q, r) will be frequently changed during two consecutive kNN
updates when an object is in the ISR constructed by V*-Diagram. Therefore, it is almost as
ineffective as just utilizing V*-Diagram based on the center c of a line segment s. Next, we
analyze V*-Diagram (which uses dist (q, c) to approximate dist (q, s)) and LV*-Diagram
in term of efficiency and effectiveness theoretically and experimentally.

670 World Wide Web (2016) 19:653–677

Assuming the shortest distance d from a point q to a line segment s should be measured
based on q’s projection on s, which may have a quite large derivation from the distance d ′
from q to the center point of s. Theoretically, 0 < d/d ′ = sinα < 1, where 0◦ < α < 90◦.
Therefore, the derivation has no upper bound guaranteed. Obviously, the nearer q is from s
or the longer s is (which is quite common in our scenario considering we conduct nearest
neighbor queries), the larger the derivation is. Second, because our kNN query result is
order sensitive. For two line segments s1 and s2, dist (q, s1) < dist (q, s2) cannot infer
dist (q, c1) < dist (q, c2) according to the pythagorean theorem and hence it has a large
possibility to return wrong results. Similarly, a large derivation can be inferred for two other
dist (q, s) evaluation patterns. In term of efficiency, the extra costs of our accurate methods
are mainly two fold. First, computing d only incur very little extra CPU cost compared with
computing d ′. Second, because dist (q, s) < dist (q, c), ISR of LV*-Diagram is a little
smaller than that of V*-Diagram which may incur a little more I/O and communication
costs. We conduct experimental evaluation in Section 6 to compare these two methods.

6 Experimental evaluation and analysis

6.1 Experiment settings

In this section, the performance of LMkNN is evaluated by comparing with the baseline
sampling-based method, since LMkNN is the first approach to deal with MkNN queries
over line segments. Two real datasets4 are used in our experiments. One contains the data
of 30,674 line segments bounded by MBR in the Germany Road Network and the other
records 17,790 line segments bounded by MBR of the Germany Utility Network. Both line
segments and polyline segments are contained in the data sets. Two different types of query
trajectories are generated: random (R) and directional (D). Each trajectory consists of a
series of sampled locations of moving objects. The distance of consecutive locations are
controlled by the step length factor which reflects the velocity of objects. We generate 20
different trajectories for each experiment and the average results are obtained. The cumula-
tive total CPU time, I/O cost (in terms of the number of page accesses) and communication
cost (in terms of the communication number) for all the sampled locations of each trajec-
tory are recorded. All experiments were implemented in Java and were run on a 3.40GHz
Inter Core i7-2600 CPU, 8.00GB RAM and 64 bits windows OS. In each set of experiments,
we only alter one parameter and keep others fixed. The major default parameter values are
given in Table 3.

6.2 Performance evaluation

The effect of x’s value As shown in Figure 9a, we can observe that the CPU time
decreases with the increase of x. This is because when x keeps increasing, Sk becomes
larger, and hence the frequency to incur a new ISR construction(ISRC) algorithm is reduced.
Figure 9b depicts the effects of x on I/O costs measured by the number of page accesses. By
analysis, the page access is only incurred by the BF-kNN execution during ISRC. Because
a larger x will lead to a larger scale of Sk , and thus the frequency of performing BF-kNN
is reduced. On the other hand, the increase of x will cause more points accessed for each

4http://www.chorochronos.org/?q=node/54

http://www.chorochronos.org/?q=node/54

World Wide Web (2016) 19:653–677 671

Table 3 default values of the
parameters in the experiment Parameters Default value

x 20

k 10

buffer pages 16

number of moving object locations 1000

step length factor 3

line segment number for Gremany Roads 30674

line segment number for Germany Utilitys 17790

BF-kNN execution which will offset the gains of fewer execution times. This is why the
overall trend of I/O costs keeps steady with the variation of x. In general, the optimal x value
is sensitive to the size and the distribution of datasets. Furthermore, for the Client/Server
mode, the server is responsible for receiving the request, querying the k nearest neighbor
and returning the results to clients. The client is responsible for computing and updating
FRR and LSR while sending the request to the server. The involved communication costs
are tested in Figure 9c. The communication will only be incurred when an object crosses
the border of ISR and a new ISR needs to be returned. Similarly, a smaller ISR updating fre-
quency is generated with the increase of x, which will dominate the overall communication
costs. Here, x is a key parameter to affect the access frequency of the server. Obviously, the
sampling methods will not be affected by x in whatever metrics. We can see our algorithm
obtains at least an order of magnitude gains for both two different types of query trajectories,
i.e., random (R) and directional (D). Particularly, compared to random (R), because direc-
tional (D) has a larger possibilities to cross the border of ISR, more costs in term of CPU,
I/O and communication will be consequently consumed. Also, Figure 10 conducted on Ger-
many Utility Datasets demonstrates the similar trends. But because fewer line segments
are contained in Germany Utility Datasets, the overall execution costs are correspondingly
reduced compared to Germany Roads Datasets.

The effect of k In Figures 11 and 12, the effects of k are tested. The augment of k will
increase the frequency of ISR construction and the unit construction costs, which will con-
sume more CPU time as a consequence. Compared with Sampling, LMkNN obtains at least
an order of magnitude gains from the CPU time perspective since the safe region of LMkNN
significantly reduces the frequency of performing BF-kNN. Figures 11b and 12b demon-
strates that the number of page accesses increases with the augment of k. Because there
are two reasons that influence the performance. One is the size of the ISR, another is more

 0.1

 1

 10

 100

5 10 15 20 25

ru
nn

in
g

tim
e(

s)

the value of x
(a) CPU time

Germany Roads

LMkNN(D)
LMkNN(R)

Sampling(D)
Sampling(R)

 1

 10

 100

 1000

 10000

5 10 15 20 25

pa
ge

 a
cc

es
se

s

the value of x
(b) I/O cost

Germany Roads

LMkNN(D)
LMkNN(R)

Sampling(D)
Sampling(R)

 10

 100

 1000

5 10 15 20 25

co
m

m
. c

os
t

the value of x
(c) communication cost

Germany Roads

LMkNN(D)
LMkNN(R)

Sampling(D)
Sampling(R)

Figure 9 Analyzing the effect of x (Germany Roads)

672 World Wide Web (2016) 19:653–677

 0.1

 1

 10

 100

5 10 15 20 25

ru
nn

in
g

tim
e(

s)

the value of x
(a) CPU time

Germany Utility

LMkNN(D)
LMkNN(R)

Sampling(D)
Sampling(R)

 1

 10

 100

 1000

 10000

5 10 15 20 25

pa
ge

 a
cc

es
se

s

the value of x
(b) I/O cost

Germany Utility

LMkNN(D)
LMkNN(R)

Sampling(D)
Sampling(R)

 100

 1000

5 10 15 20 25

co
m

m
. c

os
t

the value of x
(c) communication cost

Germany Utility

LMkNN(D)
LMkNN(R)

Sampling(D)
Sampling(R)

Figure 10 Analyzing the effect of x (Germany Utility)

 0.01

 0.1

 1

 10

5 10 15 20

ru
nn

in
g

tim
e(

s)

the value of k
(a) CPU time of k

Germany Roads

LMkNN(D)
LMkNN(R)

Sampling(D)
Sampling(R) 1

 10

 100

 1000

 10000

5 10 15 20

pa
ge

 a
cc

es
se

s

the value of k
(b) I/O cost

Germany Roads

LMkNN(D)
LMkNN(R)

Sampling(D)
Sampling(R)

 10

 100

 1000

5 10 15 20

co
m

m
. c

os
t

the value of k
(c) communication cost of k

Germany Roads

LMkNN(D)
LMkNN(R)

Sampling(D)
Sampling(R)

Figure 11 Analyzing the effect of k (Germany Roads)

 0.1

 1

 10

 100

5 10 15 20

ru
nn

in
g

tim
e(

s)

the value of k
(a) CPU time

Germany Utility

LMkNN(D)
LMkNN(R)

Sampling(D)
Sampling(R)

 1

 10

 100

 1000

 10000

5 10 15 20

pa
ge

 a
cc

es
se

s

the value of k
(b) I/O cost

Germany Utility

LMkNN(D)
LMkNN(R)

Sampling(D)
Sampling(R)

 10

 100

 1000

5 10 15 20

co
m

m
. c

os
t

the value of k
(c) communication cost of k

Germany Utility

LMkNN(D)
LMkNN(R)

Sampling(D)
Sampling(R)

Figure 12 Analyzing the effect of k (Germany Utility)

0

1

10

100

0 8 16 24 32

ru
nn

in
g

tim
e(

s)

buffer pages
(a) CPU time

Germany Roads

LMkNN(D)
LMkNN(R)
Sampling(D)
Sampling(R)

1
10

100
1000

10000
100000

1000000

0 8 16 24 32

pa
ge

 a
cc

es
se

s

buffer pages
(b) I/O cost

Germany Roads

LMkNN(D)
LMkNN(R)
Sampling(D)
Sampling(R)

1

10

100

1000

10000

0 8 16 24 32

co
m

m
. c

os
t

buffer pages
(c) communication cost

Germany Roads

LMkNN(D)
LMkNN(R)
Sampling(D)
Sampling(R)

Figure 13 Analyzing the effect of buffer (Germany Roads)

World Wide Web (2016) 19:653–677 673

0

1

10

100

0 8 16 24 32

ru
nn

in
g

tim
e(

s)

buffer pages
(a) CPU time

Germany Utility

LMkNN(D)
LMkNN(R)
Sampling(D)
Sampling(R)

1
10

100
1000

10000
100000

1000000

0 8 16 24 32

pa
ge

 a
cc

es
se

s

buffer pages
(b) I/O cost

Germany Utility

LMkNN(D)
LMkNN(R)
Sampling(D)
Sampling(R)

1
10

100
1000

10000
100000

0 8 16 24 32

co
m

m
. c

os
t

buffer pages
(c) communication cost

Germany Utility

LMkNN(D)
LMkNN(R)
Sampling(D)
Sampling(R)

Figure 14 Analyzing the effect of buffer (Germany Utility)

data localities. A larger k will increase the size of Sk and thus the frequency of BF-kNN.
At the same time, the number of accessed data objects for each BF-kNN calling is also
increased for a larger k. However, when we measure the I/O costs with page access, with the
shrinking of Sk and more frequency of BF-kNN, the consecutive kNN results have a larger
possibility to maintain spatial proximity (i.e., more data localities can be conserved between
consecutive BF-kNN extractions) which incurs no extra disk page access for newly intro-
duced BF-kNN operations in most cases. This is why in our tests, when k reaches a large
value in the real applications (i.e., 20), the I/O costs still don’t display obvious increase
trend and generally keep steady. But when k keeps increasing, the high frequency of BF-
kNN will be the dominating factor and leads to an increasing trend of I/O costs in the long
run. Figures 11c and 12c demonstrate the communication cost for LMkNN and Sampling.
Also, a larger k will lead to more ISR constructions, and hence results in the increase of
communication costs. Similarly, benefitting from the safe region, LMkNN overwhelmingly
outperforms Sampling.

The effect of buffer As shown in Figures 13 and 14, we test the effect of the buffer size
on the performance. From the figures, we can conclude the CPU time is not sensitive to the
buffer size as well as the communication cost. This is because the buffer size has no impact
on the number of BF-kNN calling and new ISR construction. For the I/O costs illustrated in
Figures 13b and 14b, we can observe the page access is cut down with the increase of the
buffer size, which proves that a larger buffer size can contribute to leverage the data locality
during the consecutive BF-kNN execution.

The effect of the number of moving object locations Figures 15 and 16 describe the
effect of the number of sampled moving object locations. In this set of experiment, we vary
the number of sampled locations in the query trajectory from 200 to 1,000. Obviously, for
each new location, a new kNN search will be executed by sampling-based methods. And

0

0

1

10

200 400 600 800 1000

ru
nn

in
g

tim
e(

s)

points
(a) CPU time

Germany Roads

LMkNN(D)
LMkNN(R)
Sampling(D)
Sampling(R)

0
1

10
100

1000
10000

100000
1000000

200 400 600 8001000

pa
ge

 a
cc

es
se

s

points
(b) I/O cost

Germany Roads

LMkNN(D)
LMkNN(R)
Sampling(D)
Sampling(R)

0
1

10
100

1000
10000

100000

200 400 600 8001000

co
m

m
. c

os
t

points
(c) communication cost

Germany Roads

LMkNN(D)
LMkNN(R)
Sampling(D)
Sampling(R)

Figure 15 Analyzing the effect of the number of location updates (Germany Roads)

674 World Wide Web (2016) 19:653–677

0

0

1

10

100

200 400 600 800 1000

ru
nn

in
g

tim
e(

s)

points
(a) CPU time

Germany Utility

LMkNN(D)
LMkNN(R)
Sampling(D)
Sampling(R)

0
1

10
100

1000
10000

100000
1000000

200 400 600 8001000

pa
ge

 a
cc

es
se

s

points
(b) I/O cost

Germany Utility

LMkNN(D)
LMkNN(R)
Sampling(D)
Sampling(R)

0
1

10
100

1000
10000

100000

200 400 600 8001000

co
m

m
. c

os
t

points
(c) communication cost

Germany Utility

LMkNN(D)
LMkNN(R)
Sampling(D)
Sampling(R)

Figure 16 Analyzing the effect of the number of location updates (Germany Utility)

 0.1

 1

 10

 100

1 3 5 7

ru
nn

in
g

tim
e(

s)

object-moving speed
(a) CPU time

Germany Roads

LMkNN(D)
LMkNN(R)

Sampling(D)
Sampling(R)

 1

 10

 100

 1000

 10000

 100000

1 3 5 7

pa
ge

 a
cc

es
se

s

object-moving speed
(b) I/O cost

Germany Roads

LMkNN(D)
LMkNN(R)

Sampling(D)
Sampling(R)

 10

 100

 1000

1 3 5 7

co
m

m
. c

os
t

object-moving speed
(c) communication cost

Germany Roads

LMkNN(D)
LMkNN(R)

Sampling(D)
Sampling(R)

Figure 17 Analyzing the effect of the point-moving speed (Germany Roads)

 0.1

 1

 10

 100

1 3 5 7

ru
nn

in
g

tim
e(

s)

object-moving speed
(a) CPU time

Germany Utility

LMkNN(D)
LMkNN(R)

Sampling(D)
Sampling(R)

 1

 10

 100

 1000

 10000

 100000

1 3 5 7

pa
ge

 a
cc

es
se

s

object-moving speed
(b) I/O cost

Germany Utility

LMkNN(D)
LMkNN(R)

Sampling(D)
Sampling(R)

 10

 100

 1000

1 3 5 7

co
m

m
. c

os
t

object-moving speed
(c) communication cost

Germany Utility

LMkNN(D)
LMkNN(R)

Sampling(D)
Sampling(R)

Figure 18 Analyzing the effect of the point-moving speed (Germany Utility)

0

1

10

100

6 12 18 24 30

ru
nn

in
g

tim
e(

s)

#MBRs(103)
(a) CPU time

Germany Roads

LMkNN(D)
LMkNN(R)
Sampling(D)
Sampling(R)

1
10

100
1000

10000
100000

1000000
10000000

6 12 18 24 30

pa
ge

 a
cc

es
se

s

#MBRs(103)
(b) I/O cost

Germany Roads

LMkNN(D)
LMkNN(R)
Sampling(D)
Sampling(R)

10

100

1000

10000

6 12 18 24 30

co
m

m
. c

os
t

#MBRs(103)
(c) communication cost

Germany Roads

LMkNN(D)
LMkNN(R)
Sampling(D)
Sampling(R)

Figure 19 Analyzing the effect of the number of line segments (Germany Roads)

World Wide Web (2016) 19:653–677 675

0

1

10

5 8 11 14 17

ru
nn

in
g

tim
e(

s)

#MBRs(103)

(a) CPU time

Germany Utility

LMkNN(D)
LMkNN(R)
Sampling(D)
Sampling(R)

1
10

100
1000

10000
100000

1000000

5 8 11 14 17

pa
ge

 a
cc

es
se

s

#MBRs(103)

(b) I/O cost

Germany Utility

LMkNN(D)
LMkNN(R)
Sampling(D)
Sampling(R)

10

100

1000

10000

5 8 11 14 17

co
m

m
. c

os
t

#MBRs(103)

(c) communication cost

Germany Utility

LMkNN(D)
LMkNN(R)
Sampling(D)
Sampling(R)

Figure 20 Analyzing the effect of the number of line segments (Germany Utility)

for LV*-Diagram, at each location, judging whether an object is in the safe region will be
first executed. If the border is crossed, new safe regions will be constructed. Therefore,
more sampled locations indicate more execution costs. As the number of objects locations
follows a linear increase, the CPU time and communication cost increase correspondingly.
Particularly, in terms of the CPU time and communication cost, our LMkNN outperforms
Sampling by at least an order of magnitude. In addition, two orders of magnitude gains can
be achieved with regard to I/O costs.

The effect of the object-moving speed In this suite of experiments, for every trajec-
tory, the step length factor is varied from 1 to 7, which is used to simulate the moving
speed of the query point. Figures 17 and 18 conclude our experimental results. We can
find the performance of LMkNN is deteriorated with the increase of the moving speed.
It is because the probability of moving outside the safe region is directly proportional to
the speed, which determines the frequency of calling BF-kNN and constructing ISR. In
addition, a larger velocity will destroy data access locality and thus disables the effect of
buffers.

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20

pr
ec

is
io

n

the value of k
(a) accuracy

Germany Roads

LV*-Diagram
V*-Diagram

 100

 1000

5 10 15 20

ru
nn

in
g

tim
e(

m
s)

the value of k
(b) CPU time

Germany Roads

LV*-Diagram
V*-Diagram

 1

 10

 100

5 10 15 20

pa
ge

 a
cc

es
se

s

the value of k
(c) I/O cost

Germany Roads

LV*-Diagram
V*-Diagram

 100

 1000

5 10 15 20

co
m

m
. c

os
t

the value of k
(d) communication cost

Germany Roads

LV*-Diagram
V*-Diagram

Figure 21 Comparison of V*-Diagram and LV*-Diagram

676 World Wide Web (2016) 19:653–677

The effect of the number of data objects Finally, we evaluate the effect the data object
number on the performance by sampling partial ling segments bounded by MBR uniformly
from the real data sets. In Figures 19 and 20, in a fixed region, when the number of MBRs
varies from 6,000 to 30,000 and 5,000 to 17,000 respectively, the density of line segments
will be increased. And therefore, the scale of the safe region will be reduced and a larger
frequency to construct a new ISR will be incurred. Also, more MBRs need to be accessed
during the searching. Consequently, the CPU time, I/O costs and communication costs
increase for both LMkNN and Sampling.Especially for communication costs, compared
with Sampling, LMkNN is more sensitive to the density ofMBRs due to the re-computation
of the safe region. In whatever metrics, obvious performance enhancement can be achieved
by leveraging the proposed ISR.

The comparison of V*-diagram and LV*-diagram Next, we test V*-Diagram (which
uses dist (q, c) to approximate dist (q, s)) and LV*-Diagram in term of efficiency and
effectiveness, with k varied from 5-20. For the precision illustrated in Figure 21a, we
can find the accuracy of V*-Diagram is not satisfied in our settings with the maxi-
mum error rate 60 %. From the efficiency evaluation results illustrated in Figure 21b–d,
we can observe LV*-Diagram is a little inferior to V*-Diagram with regard to CPU,
I/O and communication costs. One reason is that the distance evaluation pattern of LV*-
Diagram is more complex than that of V*-Diagram. Another influence factor is that
ISR in V*-Diagram is larger than that in LV*-Diagram because the distance will be
amplified, which lead to more frequent kNN I/O accesses and communications from
the server side. But considering the locality of consecutive kNN updates in the page,
it is not needed to access data on disk for each kNN update. In general, LV*-Diagram
displays a comparable performance with V*-Diagram while avoiding very serious error
rates.

7 Conclusions

In this paper, we study the MkNN query problem over line segment data objects and present
the LV*-Diagram to solve the problem. The relative geometric properties of safe regions for
line segments are deeply analyzed and Line-segment-oriented MkNN (LMkNN) processing
algorithms are proposed. In addition, we extend our safe regions and processing techniques
to the cases of polyline segments. Experimental results show that our approach significantly
outperforms the sampling based method with regard to CPU time, I/O cost and communi-
cation cost. This work is the first one to deal with the MkNN query by modeling the data
objects as line segments so far.

Acknowledgments This work is supported by the National Basic Research Program of China under
Grant No.2012CB316201,the National Natural Science Foundation of China under Grant No.61472071 and
61003058,and the Fundamental Research Funds for the Central Universities of China under Grant No.
N130404010.

References

1. Ali, M.E., Tanin, E., Zhang, R., Kotagiri, R.: Probabilistic voronoi diagrams for probabilistic moving
nearest neighbor queries. Data Knowl. Eng. 75, 1–33 (2012)

World Wide Web (2016) 19:653–677 677

2. Aly, A.M., Aref, W.G., Ouzzani, M.: Spatial queries with two knn predicates. Proc. VLDB Endowment
5(11), 1100C1111 (2012)

3. Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.: The r*-tree: an efficient and robust access method
for points and rectangles. SIGMOD Record 19(2), 322–331 (1990)

4. Bespamyatnikha, S., Snoeyinka, J.: Queries with segments in Voronoi diagrams. Comput. Geom. 16(1),
23–33 (2000)

5. Gao, Y., Zheng, B.: Continuous obstructed nearest neighbor queries in spatial databases. In: Proceedings
of SIGMOD, pp. 577–590 (2009)

6. Gao, Y., Zheng, B., Lee, W.C., Chen, G.: Continuous visible nearest neighbor queries. In: Proceedings
of 14th International Conference on Extending Database Technology, pp. 144–155 (2009)

7. Gao, Y., Zheng, B., Chen, G., Chen, C., Li, Q.: Continuous nearest-neighbor search in the presence of
obstacles. ACM Trans. Database Syst. 36(2) (2011)

8. Gao, Y., Zheng, B., Chen, G., Li, Q., Guo, X.: Continuous visible nearest neighbor query processing in
spatial databases. VLDB J. 20(3), 371–396 (2011)

9. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Proceedings of SIGMOD, pp.
47–57 (1984)

10. Held, M.: VRONI: An engineering approach to the reliable and efficient computation of Voronoi
diagrams of points and line segments. Comput. Geom. 18(2), 95–123 (2001)

11. Hjaltason, G.R., Samet, H.: Ranking in spatial databases. In: Symposium on Large Spatial Databases,
pp. 83–95 (1995)

12. Hu, H., Xu, J., Lee, D.L.: A generic framework for monitoring continuous spatial queries over moving
objects. In: Processings of SIGMOD, pp. 479C490 (2005)

13. Kolahdouzan, M., Shahabi, C.: Voronoi-based k nearest neighbor search for spatial network databases.
In: Proceedings of VLDB, pp. 840–851 (2004)

14. Kulik, L., Tanin, E.: Incremental rank updates for moving query points. In: Proceedings of GIScience,
pp. 251–268 (2006)

15. Kwon, H., Whang, K., Song, I., Wang, H.: RASIM: a rank-aware separate index method for answering
top-k spatial keyword queries. World Wide Web 16(2), 111–139 (2013)

16. Li, Y., Yang, J., Han, J.: Continuous k-nearest neighbor search for moving objects. In: Proceedings of
SSDBM, pp. 631–642 (2004)

17. Li, C., Gu, Y., Li, F., Chen, M.: Moving K-nearest neighbor query over ob-structed regions. In:
Proceedings of the 12th International Asia-Pacific Web Con-ference, pp. 29–35 (2010)

18. Nutanong, S., Zhang, R., Tanin, E., Kulik, L.: The V*diagram: A query dependent approach to moving
knn queries. In: Proceedings of VLDB, pp. 1095–1106 (2008)

19. Nutanong, S., Zhang, R., Tanin, E., Kulik, L.: Analysis and evaluation of V*-kNN: an efficient algorithm
for moving kNN queries. VLDB J. 19(3), 307–332 (2010)

20. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of
Voronoi Diagrams. Wiley (1992)

21. Qi, J., Zhang, R., Wang, Y., Xue, A., Yu, G., Kulik, L.: The min-dist location selection and facility
replacement queries. World Wide Web 17(6), 1261–1293 (2014)

22. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: Proceedings of SIGMOD, pp.
71–79 (1995)

23. Song, Z., Roussopoulos, N.: K-nearest neighbor search for moving query point. In: Processings of SSTD,
pp. 79C96 (2001)

24. Tao, Y., Papadias, D.: Time-parameterized queries in spatio-temporal databases. In: Proceedings of
SIGMOD, pp. 334–345 (2002)

25. Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: Proceedings of VLDB, pp.
287–298 (2002)

26. Tao, Y., Zhang, J., et al.: An efficient cost model for optimization of nearest neighbor search in low and
medium dimensional spaces. IEEE Trans. Knowl. Data Eng. 16(10), 1169–118 (2004)

27. Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.L.: Location-based spatial queries. In: Proceedings of
SIGMOD, pp. 443–454 (2003)

	Efficient moving k nearest neighbor queries over line segment objects
	Abstract
	Introduction
	Related work
	Preliminaries
	V*-diagram
	Line segment divided region

	The LV*-diagram
	Line segment oriented FRR & line segment oriented IRU
	Safe region with regard to a line segment object
	Safe region with regard to a polyline segment object
	Integrated safe region

	Algorithms
	Communication cost
	I/O cost
	CPU cost
	Space cost

	Experimental evaluation and analysis
	Experiment settings
	Performance evaluation
	The effect of x's value
	The effect of k
	The effect of buffer
	The effect of the number of moving object locations
	The effect of the object-moving speed
	The effect of the number of data objects
	The comparison of V*-diagram and LV*-diagram

	Conclusions
	Acknowledgments
	References

