

B. Hong et al. (Eds.): DASFAA Workshops 2013, LNCS 7827, pp. 31–45, 2013.
© Springer-Verlag Berlin Heidelberg 2013

BC-BSP: A BSP-Based Parallel Iterative Processing
System for Big Data on Cloud Architecture

Yubin Bao1, Zhigang Wang1,Yu Gu1, Ge Yu1, Fangling Leng1,
Hongxu Zhang2, Bairen Chen2, Chao Deng3, and Leitao Guo3

1 School of Information Science and Engineering, Northeastern University, Shenyang, China
{baoyubin,guyu,yuge,lengfangling}@ise.neu.edu.cn

2 Software Division, Neusoft Corp., Shenyang, China
{kevinzhang,chenbr}@neusoft.com

3 China Mobile Institute, China Mobile Corp., Beijing, China
{dengchao,guolt}@chinamobile.com

Abstract. Many applications in real life can produce and collect large amount
of data and many of them can be modeled by Graph. The number of vertexes of
a graph could be several hundreds of millions to billions and the number of
edges could be ten or more times of the number of its vertexes. A BSP-based
system for large-scale data (especially graph data) parallel and iterative
processing is discussed in this paper. The system has the ability to flexible con-
figuration and the extendibility for functions and strategies (such as adjusting
the parameters according to the volume of data and supporting multiple aggre-
gation functions at the same time), to process large-scale data, to tolerate faults,
to balance load, and to run clustering or classification algorithms on metric da-
tasets. Lots of experiments are done to evaluate the extendibility of the system
implemented in the paper, and the comparison between BC-BSP-based applica-
tions and MapReduce-based ones are made. The experimental results show that
BSP-based applications have higher efficiency than that of MapReduce-based
applications when the volume of data can be put in the memory during the
course of processing; on the contrary the latter are better than the former, and
the performance of BC-BSP platform outperforms Hama and Giraph.

Keywords: BSP, MapReduce, Graph Processing, Disk Cache, Big data.

1 Introduction

Graph is an abstract data structure which has been researched deeply in the area of
computer science. It is so common to express the real world using graph, such as the
road network, the spread of disease, the reference among technological literature, the
links among web pages, the relationship among all kinds of objects in social network
and the biological information network. So graph model can be used widely to model
many applications. In spite of the theory and algorithms on graph have been re-
searched in depth during the past several decades, most of them focus on small-scale
datasets. With the development of the information technology, the scale of all kinds of

32 Y. Bao et al.

information keeps increasing rapidly, which leads to the scale of graphs larger and
larger. The number may be even high in social network. Such as Facebook, the largest
scale social network has about 700 million users. For search engines, such as Google
and Baidu, it is necessary to evaluate web pages importance by related algorithms.
The most famous one is PageRank algorithm. We can define a web page as a node in
a link graph and the link between two pages is regarded as an edge with direction. So
the rank score of a web page can be computed according to the links among pages.
Given that the graph is organized by adjacent list and one whole record needs 100
bytes to store, if we store 10 billion nodes and 60 billion edges, the whole storage
space will be more than 1 TB. The situation is similar with other applications, such as
social network. The cost of time and space during processing the big scale graph has
already exceeded the ability of concentrated computing traditionally. In conclusion, it
has become a new challenge to process large scale data, especially large scale graph
efficiently.

At present, MapReduce[1] computing model based on Hadoop ecosystem can
process large-scale graph data with better fault-tolerance and scalability. While, most
graph algorithms need to process graph data many times iteratively. One or more jobs
are needed to complete an iterative computing task. As we known, the cost of the
warm-up start of a MapReduce job is considerable. In order to solve this problem,
Google developed an system for large-scale graph processing based on BSP model,
called Pregel[2]. Pregel can process graph data in parallel and implement the com-
munication among workers by message passing. However, Pregel assumes that all
data including the processed data and intermediate data (such as message data) is
resident in memory during the processing. Apparently, if the number of workers and
the main memory capacity of each worker machine are limited, the scalability is also
limited. It is not an open source project. There are two open source projects based on
BSP model, Hama[3] and Giraph[4]. Hama is also good at processing big data itera-
tively, especially for processing matrix. But it does not consider the disk as an
assistant device to temporary store graph data or messages when main memory is
overflowed too in its early version. Giraph developed by Yahoo implements the BSP
model based on Hadoop framework. Simply speaking, an application on Giraph is a
special MapReduce job without reduce stage. It designs an inbuilt loop in the map
task to simulate the super-steps of BSP model.

In this paper, we design a system BC-BSP in the Big Cloud environment of China
Mobile Corp. Therefore we call it BC-BSP (Big Cloud-BSP), which is good at iterative-
ly processing large scale graph data and other structured data. The features of BC-BSP
and our contributions are as follows. a) BC-BSP implements the BSP model and uses
the disk as the swap space to store part raw data and some intermediate data during the
iterative processing when they all can not be put in main memory. So we can handle
relative larger scale graph data if the number of available workers and the total memory
capacity are limited. b) It provides flexible configuration and scalability. Users can
choose or define the format of input and output. BC-BSP supports many data format,
such as distributed file system, database. If it is need, users can define the special data
format by relative interface. BC-BSP also supports a lot of strategies to partition the raw
data. BC-BSP supplies hash partition, local partition and user-defined partition. c) It

 BC-BSP: A BSP-Based Parallel Iterative Processing System for Big Data 33

takes load-balance into consideration. BC-BSP schedules tasks to workers with the
consideration of data locality and tries to keep the load-balance. Especially, the load
balance among workers is more prior than the data locality. d) Some experiments are
made to compare and evaluate the performance and scalability between the applications
based on BC-BSP and MapReduce.

The rest parts of the paper are arranged as follows. Section 2 introduces BSP mod-
el, section 3 gives the overview of BC-BSP, section 4 describes the interfaces of BC-
BSP, the implementation of BC-BSP is presented in section 5, section 6 presents two
application examples, PageRank[5] and K-means, on BC-BSP, section 7 shows the
experimental results and the analysis about them, and the last section draws the con-
clusions and discusses some points and the future work.

2 Introduction to BSP Model

BSP[6](Bulk Synchronous Parallel) is a “bulk” synchronous model. There is a master
to coordinate the whole other workers, which are the nodes in the cluster for storing
data and running program to process data. BSP model is a parallel computing model
based on super-step. A BSP-based application consists of a series of super-steps (see
in Fig. 1(a)). In each super-step, the tasks on the cluster workers are asynchronous
parallel running, and they can send messages to other workers for satisfying the re-
quirements of the computing job. The next super-step can start until the computing of
each worker has ended and messages sending and receiving of each task has com-
pleted. It is called barrier synchronization (see in Fig. 1(b)).

Super Step

B SP P rog ram Ends

B SP Pro gram St arts

 M eet loo p criteria?

Y

P rocess ors

Lo cal
C o mpu tation

Com munication

Barrier
synch ron izatio n

 (a) (b)

Fig. 1. BSP model. (a) The macro-running procedure of a BSP program, (b) The running pro-
cedure in a BSP super-step

3 Overview of BC-BSP

Figure 2 shows the framework of BC-BSP system which consists of the core compu-
ting engine and management tools. The core computing engine consists of the Client,
the BSPController, the Worker, the Task, the Global Synchronizer, the Message

34 Y. Bao et al.

Communicator, API/CLI, and the Fault Tolerance Controller. The management tools
consist of deployment and configuration tool, log management tool, performance
management tool, and fault management tool.

Core Computing Engine

BSP
Controller

Worker Task

Fault-Tolerance Controller

Message CommunicatorGlobal Synchronizer

CLI/API

Applications

Mgt . Tool s

Deployment
/Configuration

Log Mgt.

Performance
Mgt.

Fault Mgt.

Client

Fig. 2. The entire system framework of BC-BSP

The Client splits the input data according to the input path given by users, adjusts
the number of partitions which is the processing unit of each task in a worker, asks the
BSPController for the job ID, packs the job, and then submits the package to the
BSPController. After the job begins, it is also responsible for reporting the running
status in time. The BSPController manages the registration of the worker nodes in the
computing cluster, the heartbeats from each worker, the status information of the clus-
ter, and acts as a control centre of the fault-tolerance control. It also provides all the
interfaces for the status query. It is responsible for scheduling, initialization, running
monitor, and synchronization control of the jobs. The Worker manages the local jobs,
local synchronization control, and local aggregation on a worker node. The Task is the
entity that runs the jobs, and is responsible for inputting and outputting data and
processing the local data. The Global Synchronizer manages the global synchronization
among all the workers in each super-step by using Zookeeper, which is an open source
middleware for a centralized service for providing distributed synchronization and et al.
The global synchronization of a super-step is completed by the BSPController, the
workers, and the tasks in cooperation. During the synchronization, the aggregation can
be completed by invoking the aggregation function provided by users. The Message
Communicator is responsible for sending and receiving messages, and for caching the
messages received from other tasks to the local queue of received messages which can
be saved into disks temporally when the main memory is not enough during the
processing in every super-step. The Fault-Tolerance Controller detects faults, backups
the snapshots for fault-tolerance, and recovers the system from failures. It uses the
checkpoint mechanism for fault-tolerance. The CLI/API provides application program
interfaces for local computation, sending or receiving messages, and etc. It also provides
the commandline interface for the startup and shutdown of the system service, submit-
ting the jobs, and manually specifying checkpoint and etc. The Management Tools uses
the web interface or visual interface to provide users a method to manage the system.

 BC-BSP: A BSP-Based Parallel Iterative Processing System for Big Data 35

The Deployment/Configuration tool provides users a visual interface for deploying sys-
tem and configuring each node in the computing cluster. Log (Fault) management tool
is used to check running logs (faults occurred during the running of a job) of the running
jobs and the completed jobs. Performance management tool is used to monitor the sys-
tem running status and the job running status.

Figure 3 shows the control mechanism of the BC-BSP’s running. It shows the col-
laborative relationship among the Client, the BSPController, the Workders, the Tasks
and the Zookeeper. Users interact with the BC-BSP system by Client, such as submit-
ting jobs and monitoring the job running status. BSPController is the central nervous
system of the entire BC-BSP system, and is responsible for controlling the whole
cluster. The WorkerManager is the control center of a worker node, and manages the
running and controlling of the worker node including collecting the information of all
the tasks of a job on the worker node, communicating with the BSPController and
with other workers. The Task is the work entity which performs the specific compu-
ting work. A job may have several tasks running on one worker, and these tasks are
managed by the WorkerAgentForJob on this worker. The synchronization during the
system running is controlled by the Zookeeper. One worker runs one WorkerManager
process while there are several jobs running on it. Therefore, at the same time one
WorkerManager may consist of several WorkerAgentForJob objects which manage
all the tasks of a job on this worker.

Global
Synchronization

BSP
Program

BSP
JobClient

Run a Job
BSP

Controller
Summit

Job

Heart

 Beat

Initialize
Job

ZooKeeper

Global
Synchronization

H
ea

rt

 B
ea

t

...

Client

Controller

Worker
Server

Worker
Server
Task Worker

Server

Worker
Server
Task

Launch
Tasks

WorkerManager

WorkerAgent
for Job

WorkerAgent
for Job

Worker1

R
e

po
rt

R
e

po
rt

Worker
Server

Worker
Server
Task Worker

Server

Worker
Server
Task

Launch
Tasks

WorkerManager

WorkerAgent
for Job

WorkerAgent
for Job

Worker n

R
ep

or
t

Assign
Tasks

Assign
Tasks

R
e

p
or

t

Fig. 3. The internal structure of BC-BSP

4 The Interfaces

BC-BSP system provides two types of interface, command-line interface and APIs
(Application Program Interface). We mainly introduce the APIs.

36 Y. Bao et al.

When users write their application programs, they can invoke the APIs to extend
BSP functions to meet their needs. For example, they can use Combiners interface to
specify a combiner function for merging messages, use Aggregators interface to per-
form aggregation function, use Partitioner interface to control the partitioning of the
input data, use ContextInterface interface to pass messages and execute local compu-
tation. The following is a brief introduction to these APIs.

VertexContextInterface: It is used to supply the context of a vertex for message
passing and computing. At each super-step in a certain job, the system needs the re-
lated attributes of the vertex which is being processed, including vertex ID, value and
current aggregation results, the update of vertex value and each edge value, the in-
coming and outgoing messages. So, these attributes and the operation methods on
these attributes are encapsulated in this interface.

Combiners: During the graph processing, graph vertex is processed one by one. At
each super-step, a vertex sends messages to its adjacent vertices and receives messag-
es which are sent by other vertices at the same time. Combiners are used to merge
messages at the sender side to reduce communication overhead. And different appli-
cations may require different combine function, for example, sum(), or count(). There-
fore, users can specify their own combiner function to merge messages by extending
this interface.

Aggregators: The graph processing needs aggregation in many cases, e.g., in order
to examine whether the iteration should be stopped, PageRank application needs to
aggregate the rank errors between the current super-step and last one. So, users can
specify their own aggregators by implementing the Aggregators interface.

Partitioner: Before processing the data, the raw data should be assigned to each
task by a certain principle. The default Partitioner provided by the system is hash
function based on hashCode() method of Java. The getPartitionID() method in Parti-
tioner interface maps a vertex ID into the corresponding partition ID. Users can over-
ride that method according to their own requirements.

Input and Output: The Input Interface is used to read the graph data from data
source, e.g., HDFS or HBase. Therefore, RecordReader and InputFormat interface
are provided for defining the input format like Hadoop and users can implement them
to specify an input format to meet their needs. For example, the input format used to
read data from HBase is implemented these interfaces. The output of the processed
results should be output using the output format. Its definition is like to the input.

5 Implementation of BC-BSP

This section will introduce some implementation strategies and details of BC-BSP
system. That includes the format of graph data, BSPController which is in the Con-
troller node, WorkerManager which is the manager of a worker, Task which executes
the compute() provided by user, passes messages, controls global synchronization and
fault tolerance under the computing framework of BS-BSP system.

 BC-BSP: A BSP-Based Parallel Iterative Processing System for Big Data 37

5.1 The Presentation of Graph

The system is mainly for processing large scale graph data, but it can also process
structured data with the same data type elements. So, we mainly introduce the presen-
tation structure of graph data. The graph is made up of vertex collection and edge
collection, so there are Vertex class and Edge class to present the graph data. BC-BSP
adopts the adjacent list to organize the graph data. In the Vertex class, there are some
vertex attributes (such as vertex ID) and the information on outgoing edges. Mean-
while, it supports related methods to operate the member variables (see Fig. 4).

public class Vertex implements Writable {
 String vertexId = null; // vertex ID
 String vertexValue = null; // vertex value
 List<Edge> outEdgeList = new ArrayList<Edge>(); //store outgoing edge information
 public void addOutEdge(Edge outEdge) { }; // add an outgoing edge
 public List<Edge> getAllOutEdge() {}; // get all outgoing edges
 public void setAllOutEdge(List<Edge> aoutEdgeList) {}; // set all outgoing edges
 public boolean removeEdge(Edge edgeNode) {}; // remove an outgoing edge
 public boolean updateEdge(Edge edgeNode) {}; //update an edge value of the vertex
 public int hashCode() {}; // computing the hash code of a vertex
 public int getOutEdgeNumber() { }; // get # of outgoing edges from the vertex
 ……
 }

Fig. 4. The structure of graph vertex class

The above structure of graph vertex class is suitable for graph data. However, it al-
so can describe structured data by converting them to fit the above structure. For ex-
ample, we can treat a record of the raw structured data as the vertex value string.
Therefore, each record of raw structured data as a graph vertex.

5.2 BSPController Implementation

The Controller node is the center of the whole BC-BSP cluster. From the hardware
perspective, it is responsible for managing all the worker nodes; from the software
point of view, it is responsible for monitoring the working status of the compu-
ting cluster, receiving heartbeat information from each worker and process it, control-
ling the global synchronization among workers for each job. When the cluster
starts, the Controller node receives registration information from each node to form
unified cluster resource information. During the course of normally working, Control-
ler collects and updated the cluster resource information (such as the number of
free task slots) by the heartbeat mechanism periodically. When a user requests to
submit jobs, the Controller assigns a unique job ID to the job, and then generates a
job control object and puts it into the job waiting queue. The job scheduler selects
high priority jobs to run in accordance with the priority and FIFO strategy. Then the

38 Y. Bao et al.

task scheduler assigns tasks to workers in accordance with the principle of load bal-
ance and data locality. Because all the tasks for a job need to run at the same
time, the task scheduler pushes down the tasks to each worker node, not like the sche-
duling way in Hadoop ecosystem, in which worker node applies a task to run when it
has free task slots.

5.3 Worker Manager

A worker node is a unit of computation. After starting of BC-BSP, each worker node
of the BC-BSP cluster will create a WorkerManager process which manages the tasks
and maintains the synchronization among them. As soon as the startup of each Wor-
kerManager, it should register itself to the BSPController to join the BC-BSP compu-
ting cluster. During their life time, they send heart-beat signals to the BSPController
to report their status, respectively. When a new task arrives at a worker, WorkerMa-
nager reads and unpackes job profiles from HDFS into the local file system, and
creates a TaskinProgress object and task process, and finally starts the task process.
WorkerManager will build a WorkerAgent object for the tasks, which are running on
the same node, to collect the status information of the task for a job. In this case, two
levels of synchronizations are needed. The low level synchronization is for all tasks
belong to the same job on the same worker node to synchronize, and then the high
level is to register to ZooKeeper by worker as a whole for synchronization. So, the
two synchronization levels decline the amount of client-ends keeping connection with
ZooKeeper server and then decrease the workload of ZooKeeper. WorkerManager
manages the tasks belong to the same job as a whole, so that it can manipulate some
local computing, like the aggregation of local results computed by local tasks.

5.4 Task and Message Passing with Disk Assistant

A task is a logic computing unit. Task scheduler in BSPController assigns tasks to
worker nodes according to load balance and data locality, and then WorkerManager
on worker node creates task processes. After task starting, it first loads data processed
by it, that is, it reads data from storage media according to the specified input format
and then partitions the data into different partitions. During the course of partitioning,
some graph vertex data need to be transferred to other tasks. After the completion of
data partitioning, a global synchronization is needed to wait for all tasks belonging to
a job to finish data partitioning. Then, tasks can go into BSP’s super-steps to process
graph data iteratively, that is, local computing, message passing and global synchro-
nization. During the computing, task may send heart-beat information periodically to
WorkerAgent object in WorkerManager process to report its current status.

Pregel system and its different implements all suppose that there are enough work-
er nodes and resources in the cluster to hold all graph data processed in a task and the
related intermediate data (such as messages) during the course of each super-step in
main memory completely. But actually, this assumption doesn’t hold. There are two-
folder reasons. The first folder is that it is difficult for a user to determine how many
workers to be used and whether there are enough main memory to hold the graph data

 BC-BSP: A BSP-Based Parallel Iterative Processing System for Big Data 39

and the messages for a given dataset. The second is that the system can handle rela-
tive large-scale data under the limitation of the cluster scale.

For the above reasons, BC-BSP system applies disk space to store some graph data
and intermediate messages temporally in order to process relative large-scale data.
BC-BSP divides the JVM heap space into three parts. They are the spaces used by
temporary defined objects, the spaces for storing graph data objects, and the spaces
for messages. The space percentages occupied by the three parts are α, β and γ, re-
spectively. The sum of these parameters is equal to 1. So, user only needs to give any
two ones, and their values can be given in configuration file according to the real
situation of the processed data.

 Graph Data

Objects

 Message Data

Objects

Other Temporary

Objects

JVM heap space

α β γ

Fig. 5. The management model for JVM heap space

In order to avoid the overflow of memory, the data should be spilled into disk when
the memory occupied by the data exceeds the given threshold. In our system, no matter
graph data or message data both are swapped applying hash bucket techniques. In this
case, the hash bucket for graph data objects and the one for message data objects have
one to one relationship. Therefore, the super-step computing of a task can process graph
data objects in hash bucket one by one, at the same time the message objects are all in a
hash bucket related to the hash bucket holding graph data objects. Therefore, the system
can quickly match the graph data object with the messages sent to it.

For message objects, each task maintains three queues. The one is IncomedQueue
for managing the messages which are sent from the last super-step, processed in the
current super-step, and is kept in memory as far as possible. The second one is Inco-
mingQueue for managing the messages which are sent from other vertexes in the cur-
rent super-step, will be processed in the next super-step, and has the highest priority
to be spilled into disk. The third one is OutgoingQueue for managing the messages
which are produced during the computing, is never spilled into disk. Messages in this
queue can be combined by invoking the combine() method defined by user when the
length of the queue exceeds a given threshold, and will be sent to other tasks. Practi-
cally, these message queues can be organized by hashmap.

5.5 Data Partitioning

Each task calls data partitioning function to read the binding data split from a speci-
fied data source, and uses the data partitioning strategies, such as hash partitioning, to
allocate the graph data to a partition which is processed by a task. The system pro-
vides hashCode() method of Java as a default hash function, and also provides an
interface for users to define their own hash functions to meet their special partitioning

40 Y. Bao et al.

requirements. The input of the hash function is the value of a vertex ID, which can
be an integer or a string; the output of the hash function is the partition ID. Therefore,
a map table between PartitionID and Worker can be established to record a parti-
tion on which worker node. We can use MD5 method, which is a widely used hash
algorithm for getting digest information of the input string, to partition graph data in
order to get balanced distribution. But in practice, we find that its time consuming is
very large. There are two reasons. The first is the MD5 computing of an input string
needs more time than that of hashCode() method, the second is that the MD5 value
should be computed for each graph vertex frequently during each super-step.

Whether the size of each data partition is equalized approximately will make a di-
rect impact on the system load balance and the performance. It is known that hash
map is difficult to ensure the equilibrium of each partition. To this end, we use the
division method of multi-hash buckets merge to achieve the load balance. The basic
idea is that assuming that we need to get n partitions, first we divide input data into
k*n buckets (k ≥1), then send the number of objects in each bucket to BSPController,
who merges k*n buckets into n buckets according to load-balance principles. The
merge principles can make the data objects in each bucket as possible as balance; it
can also consider the data locality.

6 Application Examples

We design and implement several applications using the APIs supplied by the system,
such as PageRank, SSSP(Single Source Shortest Path), and K-means on non-Graph
structured data. But only the PageRank algorithm based on BSP is discussed on detail
and K-means algorithm is discussed briefly because of the space limitation.

6.1 PageRank

Fig. 6 describes the implementation of PageRank algorithm based on BS-BSP plat-
form. PageRank algorithm needs send the current rank value of the vertex to its adja-
cent vertexes which are linked by the current vertex by some rules (such as equal
allocation) as the contribution value to the adjacent vertex. According to the Page-
Rank algorithm, the messages send to the same vertex can be merged by the way of
summary. Therefore, we design and implement a combine() method by overriding the
combine() method of Combiner interface class (see in Fig. 7).

import com.chinamobile.bcbsp.*;
public class PageRankBSP extends BSP {

…… // omitted some variable definition
@Override
public void compute(Iterator<BSPMessage> messages, BSPStaffContextInterface

context) throws Exception {
/* Receive messages sent to this vertex */
receivedMsgValue = 0.0;

 BC-BSP: A BSP-Based Parallel Iterative Processing System for Big Data 41

receivedMsgSum = 0.0;
while (messages.hasNext()) {

receivedMsgSum+=Double.parseDouble(new
String(messages.next().getData())); }

/* Process received messages and Update vertex value */
if (context.getCurrentSuper - stepCounter() == 0) {

sendMsgValue = Double.valueOf(context.getVertexValue())
/context.getOutgoingEdgesNum();

} else {
 /* According to the sum of error to judge the convergence */
 errorValue=(ErrorAggValue)context.getAggregateValue(ERROR_SUM);
 if (Double.parseDouble(errorValue.getValue())< ERROR_THRSHLD) {
 context.voltToHalt(); // This vertex can halt
 return; }
 /*Compute new vertex rank value and the contribution to adjacent vertex*/
 newVertexValue=CLICK_RP*FACTOR+receivedMsgSum*(1- ACTOR);
 sendMsgValue = newVertexValue / context.getOutgoingEdgesNum();
 context.updateVertexValue(String.valueOf(newVertexValue)); }

/* Send new messages */
outgoingEdges = context.getOutgoingEdges();
while (outgoingEdges.hasNext()) {

 EdgeNode = outgoingEdges.next();
 msg = new BSPMessage(Integer.parseInt(EdgeNode.getVertexID()),
 Double.toString(sendMsgValue).getBytes());
 context.send(msg); }

return; }
}

Fig. 6. PageRank algorithm based on BS-BSP platform

public class SumCombiner extends Combiner {
 public BSPMessage combine(Iterator<BSPMessage> messages) {
 BSPMessage msg;
 double sum = 0.0;
 do {
 msg = messages.next();
 String tmpValue = new String(msg.getData());
 sum = sum + Double.parseDouble(tmpValue);
 } while (messages.hasNext());
 String newData = Double.toString(sum);

msg = new BSPMessage(msg.getDstPartition(), msg.getDstVertexID(),
newData.getBytes());

 return msg; }
}

Fig. 7. The combiner class for PageRank algorithm on BC-BSP platform

42 Y. Bao et al.

6.2 K-Means on Metric Data

In this subsection, we describe the basic idea about k-means clustering on ordinary
multi-dimensional metric dataset on BC-BSP platform. Because the data structure of
BC-BSP is designed for processing graph data, the multi-dimensional metric data
must be converted in order to fit the input requirement of BC-BSP, but it is easy to do.
So, we convert ith data point (i.e. ith line in data file) <d1, d2, d3,…, dn> into the follow-
ing format: i:tagvalue <tab> 1:d1 2:d2 … n:dn. Where, the first part <i:tagvalue> is
regarded as a graph vertex, i is the line number of a record in the data file, and tagva-
lue can be used as the cluster tag that the data record belongs to and its initial value
can be a random integer value. The second part <tab> stands for tab key, maybe 4 or
8 blank-spaces. The others are the outgoing-edge-list constructed from the each di-
mensional value of the data record separated by a blank-space, the part before semi-
colon, such as 1, 2, stands for the outgoing-edge vertex ID and isn’t used in the com-
puting procedure; the part after semicolon, such as dn, stands for the nth dimensional
value dn of the data point. The stop criterion may be the error of a cluster center point
between the adjacent two super-steps is less than a given threshold. Therefore, user
must design an aggregator to compute the error. But user need not write Combiner to
combine messages since no message need be sent between each task in the adjacent
two super-steps. The program for k-means algorithm on BC-BSP platform is omitted
because the space limitation.

7 Experiments

Some experiments are done to evaluate the performance and extendibility of our sys-
tem under different circumstances. Because Google’s Pregel does not open source,
we do not compare with it. We compare PageRank algorithm implemented on BC-
BSP platform with the one based on MapReduce framework, and the ones on Hama
and Giraph.

The hardware environments for the experiments are IBM shared-nothing cluster
linked by Gigabit Ethernet, in which each node has 2 hyper-threaded 2.00 GHz Intel
Xeon CPUs, 2GB memory, 73GB and 7200rpm hard disk. The experiments are done
on Linux Redhat V5.6 and JDK1.6 for Linux.

7.1 Comparison between BC-BSP and MapReduce

Two kinds of datasets, real world data and synthetic data, are used in the experiments.
The features of the datasets are listed in Table 1.

We use 9 nodes of the cluster to run our experiments, and setup the JVM memory
to 1GB. The raw data are assigned to each node near-equally under BC-BSP platform.
Under MapReduce framework, the number of Mappers is determined by Hadoop
framework according to the data block size, and the number of Reducers is setup as 9
(i.e. 9 nodes). Based on the above environment and configuration, the performance
comparison between the PageRank algorithm based on BC-BSP and MapReduce on
real world data is in Fig. 8, and on synthetic data in Fig. 9.

 BC-BSP: A BSP-Based Parallel Iterative Processing System for Big Data 43

The experiment results show that the performance of PageRank algorithm on BC-
BSP platform is better than that on MapReduce framework when the data including
graph data and the messages sent to other workers can be stored on the memory dur-
ing the course of computing. While when the volume of data is relative large, where
data including graph data and messages, the response time for PageRank algorithm on
BC-BSP platform is large greatly than that on MapReduce because the former needs
to use disk space as spilled space.

Table 1. The features of datasets for experiments

DatasetType Dataset Name #Vertex #Edges Data file size

Real world
data

Wikipedia Talk network 2394385 5021410 45.4MB

Autonomous system by Skitter 1,696,415 11095298 116MB

Patent citation network 3,774,768 16,518,948 203 MB

Live Journal social network 4,847,571 68,993,773 700 MB

Synthetic
data

Syth1 10,000 676,640 4.5MB

Syth2 50,000 7,543,140 56MB
Syth3 100,000 21,136,232 160MB
Syth4 4,000,000 53,991,808 685MB

0

200

400

600

800

1000

1200

1400

1600

1800

45.4M 116M 203M 700M

Data Size

R
e
s
p
o
n
s
e

T
i
m
e
(
s
)

BCBSP MapReduce

Fig. 8. Comparison between BCBSP and MapReduce on real dataset

0

200

400

600

800

1000

1200

1400

1600

4.5M 56M 160M 685M

Data Size

R
e
s
p
o
n
s
e

T
i
m
e
(
s
)

BCBSP MapReduce

Fig. 9. Comparison between BCBSP and MapReduce on synthetic dataset

44 Y. Bao et al.

7.2 Comparison among BCBSP, Hama and Giraph

In order to test the processing ability among BC-BSP, Hama without disk help, and
Giraph, we design an experiment to run PageRank algorithms on synthetic dataset.
Because the difference of the processing capability of the three BSP-based system and
the difference of their expressions on data, we generate the synthetic datasets with the
same numbers of vertexes and edges, respectively. the experiments are executed on
1G JVM. The experimental results are shown in Fig. 10.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0.5M+~9.8M 1.0M+~19.5M 1.5M+~29.3M 2.5M+~48.8M 5.0M+~97.5M

Scale of graph data

A
v
e
r
a
g
e

t
i
m
e

c
o
n
s
u
m
i
n
g

p
e
r

s
u
p
e
r
s
t
e
p

(
s
)

Hama

Giraph

BC-BSP

Fig. 10. Comparison among BCBSP, Hama and Giraph on another synthetic dataset, where
0.5M+~9.8M stands for the data set with 500000 vertexes and about 9800000 edges

By now, from Fig. 10, we can find that Hama is faster than BC-BSP a little more
when the data scale is small, but when the data scale exceeds a certain value, such as
2.5M vertexes, the jobs on Hama platform can not execute because of memory over-
flow, the average response time for a super-step on BC-BSP is faster some degree
than that on Giraph on each test data set. We can also find that applications run on
BC-BSP are faster than that on Giraph.

8 Conclusions and Discussion

This paper describes the system BC-BSP for large-scale graph processing based on BSP
model under Java environment. The system implements the main functions mentioned
in Pregel, and adds some optimized strategies to improve and enhance the performance
of the system. It implements the balanced partitioning strategy in data partitioning stage
in order to make each task have the approximately equal graph nodes to process. It im-
plements disk swap function temporally to store graph data and the messages when they
can not be hold in main memory to make the system can handle large-scale graph under
constraint of computing and storage resources. We do many experiments to evaluate the
performance of the system. We can conclude that the BSP-based applications have

 BC-BSP: A BSP-Based Parallel Iterative Processing System for Big Data 45

higher efficiency than that of MapReduce-based applications when the volume of data is
relative not very large and it can be held in the memory during the course of processing;
on the contrary the latter are better than the former. But our system can handle relative
large-scale graph data when the computing and storage resources are limitation because
it applies disk assistant mechanism.

Although we have done many efforts to optimize the system, there are many as-
pects to optimize and improve the system. For instance, a) we can optimize and im-
prove the data structure for storage and presentation of graph data using template
technique of Java to enhance the flexibility and to save the storage consumption; b)
we should consider the locality and relevance of data at the data partitioning stage
except considering the balance of each task.; c) we could enhance the capture and
detection of every kinds of faults and handle each kind of faults using different poli-
cy; d) we could improve the programming skills to decrease memory consumption
and increase the system performance. We can use object-pool technique to cache
some kinds of object to decrease the CPU consumption on object constructions and
the main memory occupation.

Acknowledgement. This work is partially supported by the Key National Natural
Science Foundation of China under Grant No 61033007, the National Natural Science
Foundation of China under Grant No. 61173028, and the joint Foundation of Ministry
of Education of China and China Mobile under Grant No. MCM20125021.

References

1. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In:
Proc. of 6th USENIX Symp. on Operating Syst. Design and Impl., pp. 137–150 (2004)

2. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Computer
Networks and ISDN Systems 30(1-7) (1998)

3. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski,
G.: Pregel: A System for Large-Scale Graph Processing. SIGMOD (2010)

4. Welcome to Hama Project, http://incubator.apache.org/hama/
5. Snoek, J.: Computing PageRank using MapReduce. Technical Report, Report No.

CSC2544. University of Toronto, Toronto (2008)
6. Ching, A., Kunz, C.: Giraph: Large-scale graph processing infrastructure on Hadoop, Ha-

doop Summit (2011)

	BC-BSP: A BSP-Based Parallel Iterative Processing
System for Big Data on Cloud Architecture
	1 Introduction
	2 Introduction to BSP Model
	3 Overview of BC-BSP
	4 The Interfaces
	5 Implementation of BC-BSP
	5.1 The Presentation of Graph
	5.2 BSPController Implementation
	5.3 Worker Manager
	5.4 Task and Message Passing with Disk Assistant
	5.5 Data Partitioning

	6 Application Examples
	6.1 PageRank
	6.2 K-Means on Metric Data

	7 Experiments
	7.1 Comparison between BC-BSP and MapReduce
	7.2 Comparison among BCBSP, Hama and Giraph

	8 Conclusions and Discussion
	References

