
Parallel Triangle Counting over Large Graphs

Wenan Wang, Yu Gu, Zhigang Wang, and Ge Yu

Northeastern University, China
{wangwenan6,wangzhigang mail}@yahoo.cn, {guyu,yuge}@ise.neu.edu.cn

Abstract. Counting the number of triangles in a graph is significant
for complex network analysis. However, with the rapid growth of graph
size, the classical centralized algorithms can not process triangle count-
ing efficiently. Though some researches have proposed parallel triangle
counting implementations on Hadoop, the performance enhancement re-
mains a challenging task. To efficiently solve the parallel triangle counting
problem, we put forward a hybrid parallel triangle counting algorithm
with efficient pruning methods. In addition, we propose a parallel sample
algorithm which can avoid repeated edge sampling and produce high-
precision results. We implement our patterns based on bulk synchronous
parallel framework. Compared with the Hadoop-based implementation,
2 to 13 times gains can be obtained in terms of executing time.

1 Introduction

The triangle counting over various graph data is a basic problem to support many
important high-level applications, which has attracted more and more attention
in both academical and industrial communities, such as [1, 2].

With the rapid growth of graph data, counting and listing triangles in such
large graphs will cause serious performance concerns. Faced with such massive
data, parallelization and sampling become two potential solutions. Some re-
searchers attempt to extend and implement triangle counting algorithms based
on Hadoop platform [3, 4]. However, some important issues such as communi-
cation optimization have not been sufficiently addressed. Besides, Hadoop may
suffer performance problems when multiple-step map-reduce execution processes
are needed. In addition, as a most prominent alternative, effective sampling can
remarkably reduce the data volume and consequently improve the evaluation
efficiency. While, how to gain high-precision results becomes quite challenging.
Doulion is a typical representative which can guarantee the precision [4]. Unfor-
tunately, the available sampling algorithms can not be easily executed in parallel
due to the “repeated edge sampling” problem.

Our major contributions are twofold. First, we step forward to explore some
essential optimization techniques to improve the efficiency of parallel triangle
counting and listing in terms of local computation and across-node communica-
tion costs. The proposed optimization methods can be easily implemented uti-
lizing more fundamental frameworks such as bulk synchronous parallel to avoid
the limitation of Hadoop-like systems. Second, we attempt to crack the nut of in-
jecting sampling techniques into our parallel framework while guaranteeing quite

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 301–308, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

302 W. Wang et al.

high-precision analysis results, and hence further enhance the system capability
in face of massive graph data. Specifically, (1) To tackle the problem of the over-
head of communication and local computing, we propose a hybrid algorithm and
a cut pruning technique. The hybrid algorithm combines the advantage of two
available solutions namely NodeIterator and EdgeIterator [5]. And we propose
the cut pruning to avoid repeated counting and reduce the message scale. (2)
To solve the repeated edge sampling problem, we propose a partial-sampling
method which can be embedded into our parallel framework.

The remaining sections are structured as follows. Section 2 reviews the related
work. Section 3 proposes our optimization techniques and sampling algorithms.
The experimental evaluation on various data sets is given in section 4 and we
conclude in section 5.

2 Related Work

The centralized triangle counting and listing algorithms over graphs have been
extensively studied. NodeIterator and EdgeIterator are two typical representa-
tives [5]. NodeIterator is a vertex-centric algorithm which traverses every vertex
and then checks the existence of an edge composed by any pair of the vertex’s
neighbors. While, EdgeIterator is an edge-centric algorithm, in which the source
vertex and the destination vertex of every edge will be abstracted. Consequently,
triangles can be found by searching common neighbors of these two vertices. In
addition, some improved algorithms are proposed [6–8] which can gain better
performance, but they are not suitable for parallel implementations as massive
messages will be incurred. Some other works on graph data management can also
indirectly offer the triangle counting function by issuing special queries. For ex-
ample, R. Giugno et al. [9] propose a technique to count the three-node complete
subgraph which composes a triangle actually. In [10], triangles can be counted
as three-step-neighbors when the source vertex is assigned as the destination
vertex.

With the rapid growth of graph data, some researchers are devoted to im-
plementing classical centralized algorithms on parallel frameworks. S. Suri et al.
[3] propose a parallel solution, NodeIterator++, by improving NodeIterator, and
implement it on Hadoop. Although NodeIterator++ counts the same triangle for
several times repeatedly, the final result can be guaranteed to be correct due to
designing different weights for edges.

Sampling techniques are regarded as feasible solutions on large data sets. Typ-
ically, C. E. Tsourakakis et al. [4] propose Doulion algorithm by using random
sampling to process each edge, and NodeIterator to count triangles. Also, Ras-
mus Pagh et al. [11] introduce a new randomized algorithm for counting triangles
in graphs. In the algorithm, one edge of a triangle is always sampled, if the other
two have been sampled. However, these sampling algorithms can not be correctly
executed in parallel because of the repeated edge sampling problem.

Parallel Triangle Counting over Large Graphs 303

3 Optimization Policies and the Sampling Algorithm

3.1 SEN-Iterator

The definitions of symbols throughout the paper are given in Table 1.

Table 1. Symbols and Definitions

Sym Definition Sym Definition

G undirected graph(no self-edges) V vertex set of G
E edge set of G Dv the degree of vertex v
D(v) neighbor set of vertex v P (i) vertex set in Node i
Node i a physical machine named i N the calculated number of triangles
M the exact number of triangles

Assume a triangle 〈u, v, w〉 exists and u ∈ P (i), v ∈ P (j), w ∈ P (k), then
triangles can be divided into three types: 1. Local-triangles, i = j = k. 2. Two-
one-triangles, i = j �= k or i = k �= j or k = j �= i. 3. Dis-triangles, i �= j �= k.
Combining the partial-sampling algorithm (see section 3.2), EdgeIterator and
NodeIterator [5], we propose a SEN-Iterator algorithm which has three phases.
First, we generate a sampled graph G

′
by sampling edges which meet our policy

with successful probability p (see section 3.2). Then local-triangles and two-one
triangles in G

′
are counted by utilizing EdgeIterator, and we handle messages by

using the concept of NodeIterator and cut pruning (see section 3.3). The third
phase is to count the dis-triangles.

3.2 Partial-Sampling Algorithm

Assume an edge 〈u, v〉 ∈ E, u ∈ P (i), v ∈ P (j), i �= j. For existing sampling algo-
rithms, in parallel environments, 〈u, v〉 will be processed on both Node i andNode
j, which will be sampled twice. Therefore, for the parallel sampling process, How
to avoid sampling an edge repeatedly is a critical problem. We propose a partial-
sampling algorithm to overcome this issue. In the partial-sampling algorithm, the
cross-Node edges are sampled with the successful probability 1. While, the edges
in the same Node are sampled with the successful probability p.

Theorem 1. The expected number of triangles in the sampled graph G′ is equal
to the actual number of triangles in G i.e. E(N) = M .

Proof. For G
′
, we assume that N1 is the number of local-triangles, N2 is the

exact number of two-one-triangles and N3 is the exact number of dis-triangles.
For G, let M1 denote the existing local triangles, M2 be the number of two-one-
triangles and M3 be the number of dis-triangles. For each existing triangle with
a specified ID i in G, εi is defined as a flag. Therefore, εi = 0 if triangle i does

304 W. Wang et al.

not exist in G′, otherwise, εi = 1. According to the partial-sampling algorithm,
the expected values of N1, N2, N3 are:

E(N1) = E

M1∑

i=1

(
1

p3
× εi) =

1

p3
×

M1∑

i=1

p3 = M1 (1)

E(N2) = E

M2∑

i=1

(
1

p
× εi) =

1

p
×

M2∑

i=1

p = M2 (2)

E(N3) = E

M3∑

i=1

εi =

M3∑

i=1

E(1) = M3 (3)

By above formulas, we can conclude that:

E(N) = E(N1) + E(N2) + E(N3) = M1 +M2 +M3 = M (4)

Furthermore, we analyze the variance of N in Theorem 2.

Theorem 2. Let M be the exact number of triangles in graph G. The variance
of N is:

V ar(N) =
M × (p3 − p6) + 2k × (p5 − p6)

p6
+Δ× p× (1 − p) (5)

where, k is the number of triangles which share an edge with other triangles.

Proof. The deviation mainly comes from three parts: overall triangles’ deviation,
edge-shared triangles’ deviation and local-triangles’ deviation. In [4], the author
gives the variance estimate of the overall triangles’ deviation and edge-shared
triangles’ deviation as follows:

V ar(N ′) =
M × (p3 − p6) + 2k × (p5 − p6)

p6
(6)

Here, we will derive the deviation of the third case. First, we assume that Δ is
the number of two-one-triangles. With the partial-sampling algorithm, only one
edge will be sampled. The variance of the third case is:

V ar(N ′′) = Δ× p× (1− p) (7)

Finally, we get the variance estimate:

V ar(N) =
M × (p3 − p6) + 2k × (p5 − p6)

p6
+Δ× p× (1 − p) (8)

Using Theorem 2, we can get the following theorem to evaluate the stability of
the expected number of triangles.

Parallel Triangle Counting over Large Graphs 305

Theorem 3.

Pr(|X −M | � ε) ≥ 1− M × (p3 − p6) + 2k × (p5 − p6)

P 6 × ε2

−Δ× p× (1− p)

ε2

(9)

Proof. By using the Chebyshev’s inequality, we have:

Pr(|X −M | � ε) ≥ 1− V ar(X)

ε2
(10)

and by substituting the Formula 8, we can analyze the bound.

This theorem gives an evaluation about the performance of our partial-sampling.
The accuracy of the approximate value is affected by the number of triangles in
the graph, the structure of the graph and the value of p. The larger the number
of triangles in the graph, the more the probability to obtain a good approximate
value is. Also, the fewer edge-shared triangles which exist in the graph, the better
the approximate value is.

3.3 Cut Pruning for Messages

In parallel environments, messages are used to confirm the existence of dis-
triangles. And in EdgeIterator or NodeIterator [5], the content of messages gen-
erated by vertex u is D(u). If messages are generated on Node i and sent to
the same Node, we define them as self − messages, while others are called
normal − messages. For EdgeIterator or NodeIterator [5], to confirm the ex-
istence of a dis-triangle 〈u, v, w〉, where u ∈ P (i), v ∈ P (j), w ∈ P (k) and
i < j < k, there are six kinds of normal − messages: Node i to Node j, Node
i to Node k, Node j to Node k, Node j to Node i, Node k to Node i and Node
k to Node j. In fact, only one message is necessary to confirm the existence of
dis-triangles. Therefore, we design an optimization policy to reduce the message
scale in SEN-Iterator: First, Node i only generates messages whose destination
Node ID is larger than i. Second, for a message sent to vertex u, its content only
includes neighbors whose ID is larger than that of u. Then, only one message
will be sent from Node i to Node j to confirm whether triangle 〈u, v, w〉 exists.

We analyze the effect of the policy. Assume Dl(v, u) =
{w | w ∈ V,w ∈ D(v), w > u} and the length of one message is measured
by the number of neighbors included in its content. For v, z ∈ V,D(v) =
{y1, y2, y3...yk−1, z, yk+1...yn}, where y1 < y2 < y3 < ...yk−1 < z < yk+1... < yn,
v ∈ P (i), z ∈ P (j), i < j, Node i will send a message to Node j according to our
policy. Then we can compute the total length of messages sent by Node i as:

rLen(v) = (n−k+1)+(n−k)+(n−k−1)+...+1 =
1

2
×(n−k+2)×(n−k+1) (11)

The length of messages based on EdgeIterator or NodeIterator is computed as:

Len(v) = n+ n+ n+ ...+ n = n2 (12)

306 W. Wang et al.

Let f(n, k) = Len(v)− rLen(v), we get:

f(n, k) =
1

2
× n2 + n× k − 1

2
× k2 − 3

2
× n+

3

2
× k − 1 (13)

Then we evaluate the derivative functions of f(n, j):

∂f

∂n
= n+ k − 3

2
(14)

∂f

∂k
= n− k +

3

2
(15)

By analyzing the Formula 14 and Formula 15, we can infer the following prop-
erties: (1) A larger n will enhance the effect of the policy, in other words, it will
have better performance for dense-graphs. (2) A larger k will enhance the effect
of the policy. It means each vertex has fewer neighbors. Considering the number
of edges is fixed, we can infer that this policy is more suitable for the scenario
where the number of every vertex’s neighbors is nearly equivalent.

4 Experiment

We implement the SEN-Iterator algorithm on the bulk synchronous parallel
model and compare the performance with NI-Hadoop. NI-Hadoop is imple-
mented on Hadoop by using the similar idea proposed by [3]. All of the datasets
we used are publicly available [12] and described in Table 2. Self-loops and the
direction of edges are removed. Our cluster is composed of 21 nodes. Every
node contains 2 hyperthreaded 2.00GHz CPUs, 8GB RAM and a Hitachi disk
drive with 500GB capacity and 7,200 RPM. All nodes are connected by gigabit
Ethernet to an Ethernet switch.

Table 2. Characteristics of data sets

Data Set Vertices Edges Triangles Data Set Vertices Edges Triangles

Ast 18,772 396,160 1,351,441 Web 875,713 5,105,039 13,391,903
Soc 131,828 841,372 4,910,076 Am2 262,111 1,234,877 717,719
Hep 12,008 237,010 3,358,449 Am5 410,236 3,356,824 3,951,063

4.1 Performance Analysis and Scalability of SEN-Iterator

We evaluate the SEN-Iterator algorithm over a large amount of real graphs. As
shown in Fig 1(a), the overall gain of SEN-Iterator is tremendous. Exemplified
by Web, the speedup of SEN-Iterator compared to NI-Hadoop is a factor of up to
13. Fig 1(b) demonstrates the scalability of SEN-Iterator. For the data set Am2,
when the number of Nodes increases from 12 to 20, the running time reduces
from 15s to 10s.

Parallel Triangle Counting over Large Graphs 307

 0

 100

 200

 300

 400

 500

 600

 700

Am2 Ast Hep Am5 Soc Web

ru
nn

in
g

tim
e(

s)

(a)overall performance

NI-Hadoop
EN-Iterator

 0

 10

 20

 30

 40

 50

 60

 70

NI-
Hadoop

SEN-
Iterator

ru
nn

in
g

tim
e(

s)

(b)scalability

12Nodes
16Nodes
20Nodes

Fig. 1. Overall performance and scalability of SEN-Iterator

4.2 Analysis of Cut Pruning

The cut pruning policy improves the performance by reducing the number of
messages. This suit of experiments is used to analyze the effect of the cut pruning
policy by comparing SEN-Iterator with None-Iterator. The latter does not adopt
the pruning policy. The message scale of None-Iterator is 2 times more than that
of SEN-Iterator. For Web, SEN-Iterator only has 3845986 messages, while None-
Iterator has 8644102 messages.

4.3 Accuracy Analysis for Partial-Sampling Algorithm

We run SEN-Iterator by five different values of p which ranges from 0.01 to 0.2.
The examination is evaluated on real graphs. We define Accuarcy = N

M , where
N is the calculated value of triangles and M is the exact value. Fig 2 shows the
experimental results. We notice that the accuracy is always greater than 99%,
when p = 0.1 or 0.15.

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 1.05

0.01 0.05 0.1 0.15 0.2

A
cc

ur
ac

y

(a)Am2

Sample
Standard

 0.97
 0.975
 0.98

 0.985
 0.99

 0.995
 1

 1.005
 1.01

 1.015

0.01 0.05 0.1 0.15 0.2

A
cc

ur
ac

y

(b)Am5

Sample
Standard 0.96

 0.98

 1

 1.02

 1.04

 1.06

0.01 0.05 0.1 0.15 0.2

A
cc

ur
ac

y

(c)Web

Sample
Standard

Fig. 2. The accuracy for different p in sampling

4.4 Performance Analysis of Partial-Sampling Algorithm

We analyze the gain of sampling by comparing SEN-Iterator and EN-Iterator
without sampling. They are run on 12 Nodes with p = 0.1. We define the speedup
as Acc = R

B , where R is the running time of EN-Iterator without cut pruning

308 W. Wang et al.

and B represents the running time of SEN-Iterator without cut pruning. The
Acc is more than 200% for all data sets. What’s more, the Acc of Web is 297%,
which is the largest.

5 Conclusions

In this paper, we propose a new solution to efficiently solve the parallel triangle
counting problem. A cut pruning policy is designed to optimize the overhead of
communication, and we propose a partial-sampling method to avoid the repeated
sampling in parallel environments. It can be embedded into our framework and
improve the performance.

Acknowledgments. This research is supported by the National Natural Sci-
ence Foundation of China (61272179, 61003058) and the Fundamental Research
Funds for the Central Universities (N110404006, N100704001).

References

1. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: Homophily in
social networks. Annual Review of Sociology 27, 415–444 (2001)

2. Eckmann, J.-P., Moses, E.: Curvature of co-links uncovers hidden thematic layers
in the World Wide Web. Proc. of the National Academy of Science, 5825–5829
(2002)

3. Suri, S., Vassilvitskii, S.: Counting triangles and the curse of the last reducer. In:
Proc. of WWW, pp. 607–614 (2011)

4. Tsourakakis, C.E., Kang, U., Miller, G.L., et al.: DOULION: counting triangles in
massive graphs with a coin. In: Proc. of KDD, pp. 837–846 (2009)

5. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algo-
rithmica 17(3), 209–223 (1997)

6. Schank, T., Wagner, D.: Finding, Counting and Listing All Triangles in Large
Graphs, an Experimental Study. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS,
vol. 3503, pp. 606–609. Springer, Heidelberg (2005)

7. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. In: Proc. of STOC, pp. 20–29 (1996)

8. Tsourakakis, C.E.: Counting triangles in real-world networks using projections.
Knowl. Inf. Syst. 26(3), 501–520 (2011)

9. Giugno, R., Shasha, D.: Graphgrep: A fast and universal method for querying
graphs. In: Proc. of ICPR, pp. 112–115 (2002)

10. Kang, U., Tong, H., Sun, J., et al.: Gbase: a scalable and general graph management
system. In: Proc. of KDD, pp. 1091–1099 (2011)

11. Pagh, R., Tsourakakis, C.E.: Colorful triangle counting and a mapreduce imple-
mentation. Inf. Process. Lett. 112(7), 277–281 (2012)

12. SNAP, http://snap.stanford.edu/data/soc-LiveJournal1.html

http://snap.stanford.edu/data/soc-LiveJournal1.html

	Parallel Triangle Counting over Large Graphs
	Introduction
	Related Work
	Optimization Policies and the Sampling Algorithm
	SEN-Iterator
	Partial-Sampling Algorithm
	Cut Pruning for Messages

	Experiment
	Performance Analysis and Scalability of SEN-Iterator
	Analysis of Cut Pruning
	Accuracy Analysis for Partial-Sampling Algorithm
	Performance Analysis of Partial-Sampling Algorithm

	Conclusions
	References

