
BC-BSP: A BSP-Based System with Disk Cache  
for Large-Scale Graph Processing 

 

Yubin Bao, Zhigang Wang,  
Qiushi Bai, Yu Gu, Ge Yu 
School of Info. Sci and Eng. 

Northeastern University  
Shenyang, China 

{baoyubin, yuge }@ise.neu.edu.cn 

Hongxu Zhang 
Software Division 

Neusoft Corp. 
Shenyang, China 

kevinzhang@neusoft.com 

 Chao Deng, Leitao Guo 
China Mobile Institute 

China Mobile Corp. 
Beijing, China 

dengchao@chinamobile.com

 
Abstract—Many applications in real life can be modeled by 
Graph, and the data scale is very large in many fields. People 
have paid more attention to large-scale graph processing. A BSP-
based system with disk cache for large-scale graph processing is 
proposed in this paper. The system has the ability to expand the 
functions and strategies (such as adjusting the parameters 
according to the volume of data and supporting multiple 
aggregation functions at the same time), to process large-scale 
data, to balance load, and to run clustering or classification 
algorithms on metric datasets. Some experiments are done to 
evaluate the scalability of the system implemented in the paper, 
and the comparison between BC-BSP-based applications and 
MapReduce-based ones are made. The experimental results show 
that BSP-based applications have higher efficiency than the 
MapReduce-based applications when the volume of data can be 
put in the memory during the course of processing; on the 
contrary the latter is better than the former. 

Keywords- BSP; MapReduce; Large-Scale Graph Processing; 
Disk Cache; Big data 

I.  INTRODUCTION 
Graph is an abstract data structure which has been 

researched deeply in the area of computer science. It is so 
common to express the real world using graph, such as the road 
network, the reference among technological literature, the links 
among web pages, the relationship among all kinds of objects 
in social network and the biological information network. So, 
graph is widely used to model real application. We can use 
graph to model the above-mentioned cases and then analyze 
them deeply. In spite of the theory and algorithms on graph 
have been researched in depth during the past decades, most of 
them aim at small-scale datasets. With the development of the 
information technology, the scale of all kinds of information 
keeps increasing rapidly, which leads to the scale of graphs 
becomes bigger and bigger. For examples, at present, more and 
more people begin use the Internet. With the help of Web2.0, 
the number of web pages has increased rapidly. According to 
the statistics of CNNIC, there are 60 billion web pages in 
China and the rate of increasing is 78.6%[1]. The situation may 
be even worse in social network. Such as Facebook, the largest 
scale social network has about 700 million users. For search 
engines, such as Google and Baidu, it is necessary to evaluate 
the importance of web pages by related algorithms. The most 
famous one is PageRank algorithm. We can define a web page 

as a node in the graph and the link between two pages is 
regarded as an edge with direction. So the rank score of a web 
page can be computed according to the links among pages. 
Given that the graph is organized by adjacent list and one 
whole record needs 100 bytes, if we store 10 billion nodes and 
60 billion edges, the whole storage space will be more than 1 
TB. The situation is similar with other applications, such as 
social network. The cost of time and space during processing 
the large-scale graph has already beyond the ability of 
concentrated computing traditionally. In conclusion, it has 
become a new challenge to process large scale graph efficiently. 

At present, MapReduce computing model based on Hadoop 
ecosystem can process large-scale graph data with the better 
fault-tolerance and scalability. While, most graph algorithms 
need to process graph data many times iteratively. We must 
start one or more jobs to complete one iterative step. As we 
known, the cost of the warm-up start of one MapReduce job is 
considerable. In order to solve this problem, Google developed 
a system for large-scale graph processing based on BSP model, 
called Pregel[2]. Pregel can process graph data in parallel and 
implement the communication among workers by message 
passing. However, Pregel assumes that all data is resident in 
memory without disk cache. Apparently, if the number of 
workers is limited, the scalability is also limited. Hama is an 
open source project of Apache[3]. It is also good at processing 
big data iteratively, especially at processing matrix. But Hama 
does not consider the disk cache too. Giraph[4] developed by 
Yahoo implements the BSP model on the Hadoop framework. 
Simply, an application on Giraph is a special MapReduce job 
without reduce task. It designs an inbuilt loop in the map task 
to simulate the super-steps of the BSP model.  

In this paper, we design a system BC-BSP, different from 
above instances, which is good at processing large scale graph 
data. The features of BC-BSP are as follows: 1) BC-BSP 
implements the BSP model and considers the disk cache. So 
we can handle relative larger scale graph data if the available 
resources are limited. 2) It provides flexible configuration and 
scalability. User can choose or define the format of input and 
output. BC-BSP supports several data formats, such as 
distributed file system and key-value databases. User can 
define the special data format by related interface. BC-BSP 
also supports several strategies to partition the raw data. BC-
BSP supplies hash partition, local partition and user-defined 

2012 7th Open Cirrus Summit

978-0-7695-4908-8/12 $26.00 © 2012 IEEE

DOI 10.1109/OCS.2012.37

35



partition. 3) It takes load-balance into consideration. BC-BSP 
schedules tasks to workers with the consideration of data 
locality and tries to keep the load-balance among workers. 
Especially, the load balance among workers is more prior than 
the data locality. 4) Some experiments are done to compare and 
evaluate the performance and scalability between the 
applications based on BC-BSP platform and MapReduce model. 

II. INTRODUCTION TO BSP MODEL 
BSP (Bulk Synchronous Parallel) is a “bulk” synchronous 

model[5]. There is a concentrated master to coordinate the 
whole other workers, which are the nodes in the cluster for 
storing data and running program to process data. BSP model 
is a parallel computing model based on super-step. A BSP-
based application can be solved by a series of sequential super-
steps. In each super-step, the tasks on the cluster workers are 
asynchronous parallel running, and they can send messages to 
other tasks for the requirements of the computing job. The next 
super-step can start until the computing of each worker ends, 
and messages that need to be sent to other tasks and to be 
received from other tasks are processed completely. It is called 
barrier synchronization. 

III. OVERVIEW OF BC-BSP 
The entire framework of the BC-BSP system consists of the 

inner core computing engine and the outer management tools. 
The core computing engine consists of the Client, the 
BSPController, the Worker, the Task, the Global Synchronizer, 
the Message Communicator, the Fault-Tolerance Controller, 
and API/CLI. The management tools consist of the cluster 
management, the automatic deployment and configuration tool, 
the performance management, and the fault management. 

The Client splits the input data, adjusts the number of 
partitions, asks BSPController for the job ID, packs the job, 
and then submits the package to BSPController. After the job 
starts, it is also responsible for reporting the running status in 
time. BSPController manages the registration of the worker 
nodes in the computing cluster, the collecting of the heartbeats, 
the status information of the cluster, and acts as a control center 
of the fault-tolerance control. It also provides the interface for 
the status query. It is responsible for scheduling, initialization, 
running, and synchronization control of the jobs on the job 
level. The Worker manages the local tasks, local aggregation, 
and local synchronization control. The Task is the entity that 
runs the jobs, and is responsible for input and output the data, 
and processing the local data by invoking the compute() 
method provided by user. The Global Synchronizer manages 
the global synchronization among all the workers in each 
super-step. The global synchronization of the super-step is 
completed by the BSPController, the workers, and the tasks in 
cooperation. During the synchronization, the aggregation can 
be completed by invoking the aggregation function provided by 
user. The Message Communicator is responsible for sending 
and receiving messages, and for caching the messages received 
from other tasks to the local queue of received messages which 
can be saved into disks when the memory is not enough to hold 
them during the local computation of each super-step. The 
Fault-Tolerance Controller detects faults, backups the 
snapshots of graph data for fault-tolerance, and recovers 

failures. It uses the checkpoint mechanism for fault-tolerance. 
The management tools use the web interface to provide users a 
method of visual system management. The CLI/API provides 
users application program interfaces for local computation, 
sending or receiving messages. It also provides users the 
command-line interface for the startup and the shutdown of the 
system service, and submitting the jobs. 

 
Figure 1.  The structure of BC-BSP and the relationships among the 

components 

Figure 1 shows the control mechanism of each component 
of the BC-BSP during its running. It shows the collaborative 
relationship among the Client, the BSPController, the Workers, 
the Tasks and the Zookeeper which is used for global 
synchronization. Users interact with the BC-BSP system by 
Client, such as submitting jobs and monitoring the job’s 
running status. BSPController is the central nervous system of 
the entire BC-BSP system. The WorkerManager is the control 
center of the worker node, and manages the worker node, such 
as collecting the information of all the tasks of a job on the 
worker node and communicating with the BSPController and 
with other Workers. It sends heartbeat information to 
BSPController to report the status about the worker and the 
tasks on the worker. A job may have several tasks running on 
one Worker, and these tasks are managed by the WorkerAgent 
on this worker. The synchronization during the system running 
is controlled by the Zookeeper. One worker runs one 
WorkerManager process while it also has several jobs. 
Therefore, at the same time one WorkerManager may consist 
of several WorkerAgent objects. 

IV. THE APIS 
The system provides some APIs to user for extending BSP 

functions to fit their special needs, such as different graph 
processing or scientific computation. For example, using 
Combiners interface to specify a combiner function for 
merging messages, using Aggregators interface to perform 
aggregation function, using Partitioner interface to control the 
partitioning of the input data, using VertexContextInterface 
interface to pass messages and execute local computation. The 
following is a brief introduction to these APIs. 

VertexContextInterface: It is used to supply the context of 
a vertex for message passing and computing. At each super-
step in a certain job, the system needs the related attributes of 
the vertex which is being processed, including vertex ID, value 
and current aggregation results, the update of vertex's value and 
edges' value, the incoming messages and outgoing messages. 

36



So, these attributes and the operation methods on these 
attributes are encapsulated in this interface. 

Combiners: During the graph processing, graph vertex is 
processed one by one. At each super-step, a vertex sends 
messages to its adjacent vertices and receives messages which 
are sent by other vertices at the same time. Combiners are used 
to merge messages at the sender side to reduce communication 
overhead. And different applications may require different 
combine functions, for example, sum, and count. Therefore, 
users can specify their own combiner to merge messages. 

Aggregators: The graph processing needs aggregation in 
many cases, e.g., in order to examine whether the iteration 
should stop, PageRank algorithm needs to aggregate the rank 
error between the current super-step and last one. So, users can 
implement their own aggregators by the Aggregators interface. 

Partitionar: Before processing the graph, the graph data 
should be assigned to each task by a certain principle. The 
default Partitioner provided by the system is hash function 
based on MD5. The getPartitionID() method in Partitioner 
interface map a vertex ID into the corresponding partition ID. 
Users can override that method according to their own needs. 

Input and Output: The Input interface aims to read the 
graph data from data source, e.g., HDFS or HBase. Therefore,  
the RecordReader and InputFormat interfaces are provided for 
defining the input format and users can implement them to 
specify the input format to meet their own needs. For example, 
the input format used to read data from HBase is implemented 
these interfaces. The output of the processed results should be 
output using the output format. Its definition is like to the input. 

V. IMPLEMENTATION OF THE SYSTEM 
This section introduces some strategies and details of the 

BC-BSP system, such as the format of graph data, the 
implementation of BSPController, WorkerManager, and task 
and message passing with disk cache. 

A. The Presentation of Graph 
The graph is made up of vertex collection and edge 

collection. So, there are vertex class and edge class to present 
the graph data. BC-BSP adopts the adjacent list to organize the 
graph data. In the vertex class, there are some vertex attributes 
(such as vertex ID and vertex value) and the information on 
outgoing edges. Meanwhile, it supports related methods to 
operate these objects. 

B. BSPController Implementation 
From the hardware perspective, it is responsible for 

managing all the worker nodes; from the software view, it is 
responsible for monitoring the working status of the entire 
cluster, receiving  the heartbeat information from each worker 
and process it, controlling the global synchronization among 
the workers for each job. When the cluster starts, the 
BSPController node receives registration information from 
each node to form unified cluster resource information. During 
the course of normally working, it collects and updates the 
cluster resource information (such as the number of free task 
slots) by the heartbeat mechanism periodically. When a user 

requests to submit jobs, BSPController assigns a unique jobID 
to the job, and then generates a job control object and put it 
into the job waiting queue. The job scheduler selects high 
priority jobs to run in accordance with the priority and FIFO 
policy. Then the task scheduler assigns tasks to workers in 
accordance with the principle of load balance and data locality. 
Because all the tasks for a job need to run at the same time, the 
task scheduler pushes down the tasks to each worker node, not 
like the scheduling way in Hadoop ecosystem, in which worker 
node applies a task to run when it has free task slots. 

C. WorkerManager Implementation 
A worker node is a computation unit. After each worker 

starting, a WorkerManager process is created on every node. It 
manages the tasks and maintains the synchronization among 
them. Then WorkerManagers should register to BSPController 
to join the BSP cluster. During their life time, they send 
heartbeats to BSPController to report their status, respectively. 
When a new task arrives at a worker, WorkerManager reads 
and unpacks job profiles from HDFS into the local file system, 
creates task process, and finally starts the task process. Then, 
WorkerManager creates a WorkerAgent object for managing 
the tasks belonging to the same job. In this case, two levels of 
global synchronization are needed. The low level one is for all 
tasks belonging to the same job on the same worker to 
synchronize, and then the high level one is to register to 
ZooKeeper by worker as a whole for synchronization. So, the 
two levels of synchronization decline the amount of client-ends 
keeping connection with ZooKeeper server and then decrease 
the ZooKeeper workload. Because WorkerManager manages 
the tasks belonging to the same job as a whole, it can do some 
local computing tasks, like the aggregation of local results 
computed by local tasks. 

D. Task and Message Passing with Disk Cache 
A task is a logic computing unit. Task scheduler in 

BSPController assigns tasks to worker nodes according to load 
balance and data locality and WorkerManager on worker node 
creates task processes. After task starting, it first loads data 
processed by it, that is, it reads data from storage media 
according to the specified input format and then partitions the 
data into different partitions. During the course of partitioning, 
some graph vertex data need to be passed to other tasks by the 
way of message passing. After the completion of data 
partitioning, a global synchronization is needed to wait for all 
tasks belonging to a job to complete data partitioning. Then, 
tasks can go into BSP’s super-steps to process graph data 
iteratively, that is, local computing, message passing and global 
synchronization. During the computing, tasks may send 
heartbeat information periodically to WorkerAgent object in 
WorkerManager process to report its current status.  

Pregel system and its different implements all suppose that 
there are enough worker nodes and resources in the cluster to 
hold all graph data processed in a task in memory completely. 
But in fact, this assumption doesn’t hold. There are two folder 
reasons. The first is that it is difficult for users to determine 
how many workers to be used and whether the graph data can 
be held in main memory for a given dataset. The second is that 
the system can handle relative large-scale data under the 

37



limitation of the cluster scale. These cases also exist for the 
messages. 

For the above reasons, BC-BSP system applies disk cache 
mechanism to process relative large-scale data. BC-BSP 
divides the JVM heap space into three parts. They are the 
spaces used by temporary defined objects, the spaces for 
storing graph data objects, and the spaces for storing messages. 
The space percentages occupied by the three parts are �, � and 
�, respectively. The sum of these parameters is equal to 1. So, 
user only needs to give any two ones, and the real values of the 
three parameters can be given according to the real situation of 
the processed data. 

In order to avoid the overflow of memory, the graph data 
and messages should be cache into disk when the memory 
occupied by the data exceeds the given threshold. In our 
system, no matter graph data or message data both are cached 
applying hash bucket technique. In this case, the hash buckets 
for graph data objects and the ones for message data objects 
have one to one relationship. Therefore, the super-step 
computing of a task can process graph data objects in hash 
buckets one by one, at the same time the message objects are 
all in a hash bucket related to the hash bucket holding graph 
data objects. Therefore, the system can quickly match the 
graph data objects with the messages sent to it.  

For message objects, each task maintains three queues. The 
one is IncomedQueue for managing the messages which are 
sent from the previous super-step, processed in the current 
super-step, and kept in memory as far as possible. The second 
one is IncomingQueue for managing the messages which are 
received from other vertices in the current super-step, will be 
processed in the next super-step, and has the highest priority to 
be cached into disk. The third one is OutgoingQueue for 
managing the messages which are produced during the 
computing, are never cached into disk, will be combined by 
invoking the combine() method defined by user when the 
length of the queue exceeds a given threshold, and will be sent 
to other tasks. 

E. Data Partitioning Implementation 
Each task calls data partitioning function to read the 

binding data splits from a specified data source, and then uses 
the data partitioning principles, such as hash partitioning, to 
allocate the graph data to a partition which is processed by a 
task. The system provides MD5 method as a default hash 
function, and also provides an interface for users to define their 
own hash functions to meet their special partitioning 
requirements. The input of the hash function is the value of a 
vertex ID, which can be an integer or a string; the output of the 
hash function is the partition ID (namely PartitionID). 
Therefore, a map table between PartitionID and Worker should 
be established to record a partition on which worker. The 
system can know a vertex by its vertexID in which worker and 
which partition by looking at the map table. 

Whether the size of each data partition is equalized 
approximately will make a direct impact on the system load 
balance and the performance. We know that hash map is 
difficult to ensure the equilibrium of each partition. To this end, 
we use the division method which merges multi-hash buckets 

to form the final partitions to achieve the load balance. The 
basic idea is assuming that we need to get n partitions, first we 
divide input data into k*n buckets (k >1), then send the number 
of objects in each bucket to BSPController, which merges k*n 
buckets into n buckets according to a certain principles. The 
merge principles can make the data objects in each bucket as 
balanced as possible. 

VI. APPLICATIONS 
We design and implement several applications using the 

APIs provided by the system, such as PageRank, SSSP(Single 
Source Shortest Path), and K-means on non-Graph data. But 
only the PageRank algorithm and K-means algorithm based on 
BSP is discussed briefly because of the limitation of space. 

A. PageRank 
PageRank algorithm needs to send the current rank value of 

the vertex to its adjacent vertices which are linked by the 
current vertex by some rules (such as equal allocation) as the 
contribution value to the adjacent vertex. According to the 
PageRank algorithm, the messages send to the same vertex can 
be merged by the way of summary. Therefore, we implement a 
combine() method by overriding the combine() method of 
Combiner interface. The programs for PageRank algorithm on 
BC-BSP platform are omitted because the space limitation. 

B.  K-means on metric data 
In this subsection, we describe the basic idea about K-

means clustering on multi-dimensional metric dataset on BC-
BSP platform. Because the data structure of BC-BSP is 
designed for processing graph data, the multi-dimensional 
metric data must be converted in order to fit the input 
requirement of BC-BSP, but it is easy to do. We convert ith data 
point (i.e. ith line in data file) <d1, d2, d3, …, dn> into the 
following format: < i:tagvalue <tab> 1:d1 2:d2 …n:dn.>. The 
stop criterion may be the error of a cluster center point between 
the two adjacent steps is less than a given threshold. Therefore, 
user must design an aggregator to compute the error. But user 
need not write Combiner to combine messages since no 
message need be sent between each task in the two adjacent 
super-steps. The programs for k-means algorithm are omitted 
because the space limitation.  

VII. EXPERIMENTS 
Some experiments are done to evaluate the performance 

and scalability of our system under different circumstances. 
Because Google’s Pregel does not open its source code, Hama 
and Giraph project both are not complete system, we do not 
compare with them. We compare PageRank algorithm 
implemented on BC-BSP platform with the one based on 
MapReduce framework. 

The hardware environments for the experiments are  
shared-nothing cluster linked by Gigabit Ethernet, in which 
each node has 2 hyperthreaded 2.00GHz Intel Xeon CPUs, 
2GB memory, 73GB and 7200rpm hard disk. The experiments 
are done on Linux Redhat 5.6, and JDK1.6 for Linux. Two 
kinds of datasets, real world data and synthetic data, are used in 
the experiments. The features of the datasets are listed in Tab. 1. 

38



TABLE I.   THEFEATURES OF DATASETS FOR EXPERIMENTS 

Data 
set  Dataset Name #Vertex #Edges Size of data 

file 
Wiki. Talk network 2394385 5021410 45.4MB 
Berkeley Stanford web 
graph. 685,230 7,600,595 76.8MB 

Autonomous systems by 
Skitter 1,696,415 11095298 116MB 

Patent citation networks 3,774,768 16,518,948 203 MB 

Real 
world 
data 

Live Journal SN. 4,847,571 68,993,773 705 MB 

Syth1 10,000 676,640 4.55MB 

Syth2 50,000 7,543,140 56.51MB 
Syth3 100,000 21,136,232 160.15MB

Synth. 
data 

Syth4 4,000,000 53,991,808 685.13MB

We use 10 nodes of the cluster to run our experiments, one  
acts as Controller and the other 9 notes are workers, and setup 
the JVM memory to 1 GB. The raw data are assigned to each 
node equally. Under MapReduce framework, the number of 
Mappers is determined by Hadoop according to the data block 
size, and the number of Reducers is setup as 9 (i.e. 9 nodes). 
Based on the above setting, the performance comparison 
between the PageRank algorithm based on BC-BSP and 
MapReduce on real world data is in Fig. 2, and on synthetic 
data in Fig. 3. 

 
Figure 2.  Comparison between BC-BSP and MapReduce on real dataset 

 
Figure 3.  Comparison between BC-BSP and MapReduce on synthetic 

dataset 

The experiment results show that the performance of 
PageRank algorithm on BC-BSP platform is better than that on 
MapReduce when the data including graph data and the 

messages sent to other workers can be stored on the memory 
during the course of computing. While when the volume of 
data are relative large, that is, data including graph data and 
messages, the response time for PageRank algorithm on BC-
BSP platform is large greatly than that on MapReduce because 
the former needs to use disk space as cache. 

VIII. CONCLUSIONS AND DISCUSSION 
This paper describes the system BC-BSP for large-scale 

graph processing based on BSP model. The system implements 
the main functions mentioned in Pregel, and adds some 
optimized strategies to improve and enhance the performance 
of the system. It implements the balanced partitioning strategy 
in data partitioning stage to make each task have the 
approximately equal graph nodes to process. It implements 
disk cache to cache graph data and the messages to other tasks 
when they can not be hold in main memory to make the system 
can handle large-scale graph under constraint of computing and 
storage resources. We do many experiments to evaluate the 
performance of the system. We can conclude that the BSP-
based applications have higher efficiency than the MapReduce-
based ones when the volume of data is relative not very large 
and it can be held in the memory during the course of 
processing; on the contrary the latter is better than the former. 
But our system can handle relative large-scale graph data when 
the computing and storage resources are limitation because it 
applies cache mechanism. 

Although we have done many efforts to optimize the 
system, there are many aspects to optimize and improve the 
system. For instance, 1) we can optimize and improve the data 
structure for storage and presentation of graph data using 
template technique; 2) we should consider the locality and 
relevance of data at the data partitioning stage except 
considering the balance of each task.. 

ACKNOWLEDGE  
This work is partially supported by the Key National 

Natural Science Foundation of China under Grant No. 
61033007 the National Natural Science Foundation of China 
under Grant No. 61173028, and the Fundamental Research 
Funds for the Central Universities under Grant No. 
N100704001. 

REFERENCES 
[1] S. Brin, L. Page, “The anatomy of a large-scale hypertextual web 

search engine”, Computer Networks and ISDN Systems, 1998, 
30, pp.1-7. 

[2] G. Malewicz, M. H. Austern, A. J.C.Bik, et al. “Pregel: A 
System for Large-Scale Graph Processing”, SIGMOD, 2010, pp 
135-145. 

[3] Welcome to Hama Project, http://incubator.apache.org/ hama/, 
2011-7-13 

[4] A Ching, C Kunz. “Giraph: Large-scalegraph processing 
infrastructure on Hadoop”, Hadoop Summit 2011, 6/29/2011�
https://github.com/aching/Giraph. 

[5] L. G Valiant, “A Bridging Model for Parallel Computation”, 
Communications of the ACM, Aug., 1990, Vol. 33, No. 8, pp. 
103-111.

 

39


