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A B S T R A C T

Estimating frequency distributions in multidimensional categorical data is fundamental for many real-world ap-
plications, but such data often contains sensitive personal information, necessitating robust privacy protection.
The emerging shuffled differential privacy (SDP) model provides a promising solution, yet existing methods are
either limited to single-dimensional data or suffer from poor accuracy in multidimensional scenarios. To address
these challenges, this paper introduces Multiple Hash Mechanism (MHM), which uses an innovative hash-based
local perturbation technique for efficient dimensionality reduction to improve the result accuracy under the
SDP framework. Additionally, we provide a detailed analysis of the shuffling benefits of MHM outputs, showing
significant accuracy improvements. For cases requiring personalized privacy levels, we propose the Overlapping
Group Mechanism, which further enhances the shuffling benefits and boosts overall accuracy. Experimental
results on real-world datasets validate the effectiveness of proposed methods.
1. Introduction

The big data era is coming with strong and ever-growing demands
on analyzing and collecting personal information to support data anal-
ysis tasks. Most of these tasks have a fundamental component relying
on frequency distribution among categorical data. For example, in
the shopping analysis, the typical frequent itemset mining algorithm,
Apriori (Agrawal and Srikant, 1994), checks whether an itemset is
frequent by comparing its frequency against a given threshold. Here,
an itemset consists of different categorical items from the goods at-
tribute. Another example is the well-known ID3 algorithm (Quinlan,
1986), which constructs a decision tree to classify things with multiple
attributes. Frequency distribution is used to compute the information
gain so that reasonable attributes can be selected for better classifi-
cation. The value of each attribute is also categorical, like female vs.
male, and overweight or not. However, deriving frequency distributions
requires collecting user data, which often contains sensitive personal
information, posing significant privacy risks.

To address these risks, privacy protection models like 𝑘-anonymity
(Caruccio et al., 2022; Aggarwal, 2005; Garg and Torra, 2024) and
𝜖-differential privacy (DP) (Li et al., 2017; Niu et al., 2021; Qin
et al., 2016) have been developed. The former obscures individual
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records within groups of 𝑘-indistinguishable records to prevent re-
identification, but it is vulnerable to attacks such as ‘‘homogene-
ity’’ (Machanavajjhala et al., 2006) and ‘‘background knowledge’’
(Machanavajjhala et al., 2006). In contrast, differential privacy guaran-
tees that no adversary can confidently infer private values, regardless
of their prior knowledge. A recent advancement, shuffled differential
privacy (SDP) (Balle et al., 2019; Cheu et al., 2019; Erlingsson et al.,
2019), offers enhanced privacy by introducing a shuffler: (1) each user
first sends data locally perturbed with noise to a simple yet trusted shuf-
fler; (2) the latter does nothing but permutes received reports before
submitting them to the non-trusted curator. Benefiting from the two pro-
cedures, true values never leave local users and the curator is confused
about ‘‘who reports what’’. SDP thereby enables safe data analysis,
even though there is no trusted curator. Its key shuffler design clearly
brings privacy amplification, which decreases additionally added noise
and hence maximizes the utility of statistical information. Considered
the superiority of the SDP model, this paper focuses on publishing
frequency distribution estimation on multidimensional categorical data
under SDP.

Despite the advantages of SDP, most existing solutions are limited
to single-dimensional data, where each user contributes values from
a single attribute (Balle et al., 2019; Cheu et al., 2019; Erlingsson
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Computers & Security 151 (2025) 104301 
et al., 2019). However, many real-world applications involve several
attributes, i.e., multidimensional data, like attributes used in ID3. By
the composition property of DP, we can simply apply existing single-
attribute solutions for each dimension, but a great number of noise will
be incurred due to the large dimensionality. For better utility, another
two representatives, like FLAME (Liu et al., 2021) and TCM (Wang
et al., 2021a), are recently proposed with smart dimension reduction
policies. The former asks each user to independently sample only one
dimension value for information collection, to satisfy the single-SDP
constraint. Note that SDP must analyze privacy amplification by the
prior-known and deterministic number of collected values (i.e., shuf-
ling participants), then it can compute reasonable noise required in
he first procedure to avoid overreaction. FLAME thereby gives a pre-
efined number before sampling and finally achieves the target by
nabling shuffler to add dummy pairs, if necessary. However, it is
ebatable to enhance shuffler’s ability, because the new function will

challenge the traditionally Trusted Execution Environment (TEE)-based
implementation (Bittau et al., 2017). The dummy values also imports
extra errors. The latter transforms multi-dimensional data into single-
dimensional set-valued data, so that existing techniques can be used. It
clearly follows the strict SDP definition. However, the transformation is
compute-intensive; worse, users need to coordinate with each other to
consistently encode intersected values from different attribute domains,
which is communication-intensive. Both of them generate significant
performance penalty.

To address these limitations, this paper proposes Multiple Hash
Mechanism (MHM), a novel SDP-compliant solution for efficiently pub-
lishing frequency distributions of multidimensional categorical data.

HM’s perturbation method handles the multi-dimension problem
head on in two phases. Users first select several hash functions and
hen project the values from different dimensions into a given domain.

The shuffler only receives a single domain-related noisy value and hash
unctions as input for shuffling. As a result, the number of shuffling
articipants is fixed and can be easily pre-inferred; and we do not need
o care about the same (intersected) values from different dimensions.
hat clearly eliminates the negative side effect caused by sampling- and
ransforming-based dimension reduction policies.

Besides, as mentioned above, the privacy amplification of shuffling
can improve result utility. Analyzing a tight lower bound of the impact
is significantly important, because we can compute reasonable noise lo-
cally added by users—which is certainly as small as possible but should
be big enough to satisfy the privacy protection requirement. Thus, such
analysis is always a hot research topic for SDP. Most of existing efforts
give the bound based on the traditional DP definition (Balle et al., 2019;
Wang et al., 2020; Li et al., 2020; Wang et al., 2021a). That simplifies
the analysis but generates a loose bound, which has a negative impact
n accuracy and enforces users to add excessive noises. Inspired by
he privacy amplification analysis based on the relationship between

divergences and DP (Balle et al., 2019), MHM also makes a strict bound
analysis for shuffling. The divergence is essentially related to a sole
probability mass function used in adding local noise. MHM challenges
this constraint, because its phased perturbation generates not only
traditional perturbed values (Balle et al., 2019) but also indexes of
ash functions, both of which follow two different probability mass
unctions. Thus, a new function is constructed on top of integrating the
wo separate ones, and its key properties are extracted to derive a strict
rivacy benefit bound.

Finally, we also extend our proposal MHM to the setting where
the users are with personalized privacy protection requirement. Many
pioneers have explored solutions for traditional DP (Jorgensen et al.,
2015; Chen et al., 2016), but few efforts are devoted into the new SDP.

ur MHM is also designed with the uniform assumption. However, we
an group users by their budgets and then invoke MHM multiple times
or every group. The grouping criterion is then becoming another key
ssue. Because privacy amplification in SDP is very sensitive to the

umber of shuffling participants, we are motivated to maximize the t

2 
group size to enhance the amplification benefit. Towards this end, we
propose an Overlapping Group Mechanism where each privacy budget
is further cut into several splits as grouping criterions, and then the
user with a large budget can participate in shuffling across different
groups with high priority. That clearly increases the size of each group.
To further boost the benefit, we particularly study the important issue
about how to heuristically split budgets. The result utility is thereby
significantly improved.

We now summarize the major contributions as below.
(1) We propose a new SDP-compliant mechanism MHM involv-

ing a novel local perturbation mechanism to publish the frequency
distribution estimation on the multidimensional categorical data.

(2) We give a strict privacy benefit bound of shuffling involved
n MHM, by resorting to the relationship between divergences and

differential privacy, which can improve the result utility with the same
privacy budget setting.

(3) We study SDP with personalized privacy budgets and put for-
ard a new grouping policy overlapping group mechanism to enhance

he result utility.
(4) We conduct extensive experiments over a broad spectrum of real

atasets to demonstrate that our proposals significantly outperform the
tate-of-the-art solutions.

The remainder of this paper is organized as follows. Section 2
reviews existing studies about the problems this paper focuses on.
Section 3 presents preliminaries about differential privacy and the
xisting methods. Section 4 gives the detailed design of MHM. Section 5

proposes overlapping group mechanism for shuffler-assisted personalized
differential privacy. Section 6 evaluates the usefulness of our proposals,
and Section 7 finally concludes the paper.

2. Related work

Differential privacy (DP) contains three representative models with
ifferent settings, centralized differential privacy(CDP), local differen-
ial privacy(LDP) and shuffled differential privacy(SDP). In CDP, the
rusted curator collects users’ data and adds noise to the aggregated
esult (Dwork et al., 2006b). Differently, LDP works with an untrusted

curator. Thus, every user perturbs her/his own data locally and then
ends privatized data to the curator (Fanti et al., 2016). It provides a

stronger privacy assurance to users, as true values never leave local
devices. However, the accumulated noise scale is very high and hence
decreases result utility. To improve utility, SDP (Balle et al., 2019;
Cheu et al., 2019; Ghazi et al., 2020) employs the Encode-Shuffle-
Analyze architecture (Bittau et al., 2017), to balance utility and privacy
protection level. It adds a trusted shuffler, so as to anonymize messages
collected from users before they are sent to the curator, and hence
achieves privacy amplification (Bittau et al., 2017).

For the frequency distribution estimations problem, most of SDP-
related studies (Balle et al., 2019; Cheu et al., 2019; Erlingsson et al.,
2019; Feldman et al., 2021) focus on the one with a single categorical
ttribute. Among them, Ref. Cheu et al. (2019) proposes to collect data

from users with a binary categorical attribute. Ref. Erlingsson et al.
(2019) allows flexible interoperation between users and shuffler. Balle
et al. (2019) put forward the privacy blanket technique to process
he problem with arbitrary domain size. It especially establishes two
ines to derive the privacy amplification bound: one is based on the
raditional DP definition and the other resorts to the relationship

between divergences and DP. Many works (Wang et al., 2020; Li et al.,
2020; Wang et al., 2021a) follow the first line with different local
randomizers, including traditional OLH (Wang et al., 2020), CM (Wang
et al., 2021a), and the newly proposed protocols (Li et al., 2020). For
example, Li et al. (2020) propose the dummy blanket technique, in
which each user generates some dummy values except for the perturbed
version of her own true value. And these dummy values also participate
n the shuffling phase. To some extent, the dummy values can hide the
rue information, which brings privacy amplification. Unfortunately,



N. Wang et al.

l
A
c
t

i

e

t

s
s
o

w
p
r
s

b

s

r

Computers & Security 151 (2025) 104301 
Table 1
Summary of important related works.

Category Existing works Techniques Shortcomings

LDP +
single dimension

Wang et al. (2017) Encode the value into one-hot vector or hash the value
into a smaller domain, and then perturb it for
publication.

They just can publish the frequency
estimation on a single dimension.

LDP +
multidimensional

Wang et al. (2019b) and Liu et al.
(2024)

Choose a dimension or traverse each dimension, and
then publish the value from the dimension by using the
one dimensional publication technique.

They cannot be directly used for the SDP
setting.

SDP +
single dimension

Balle et al. (2019), Cheu et al. (2019),
Erlingsson et al. (2019), Feldman et al.
(2021), Wang et al. (2020), Li et al.
(2020) and Wang et al. (2021a)

Invoke the LDP-compliant perturbation protocol as the
local randomizer and design privacy amplification
analysis strategy for shuffling.

They cannot handle the multidimensional
frequency distribution estimation and the
privacy amplification analysis cannot be
directly used for the multidimensional setting.

SDP +
multidimension

Scott et al. (2022) and Liu et al. (2021) Invoke the protocols proposed for LDP-compliant
multidimensional frequency estimation as the local
randomizer and directly use the privacy amplification
conclusion derived in the setting of a single dimension.

They ignore the negative impact of
non-deterministic shuffling participants
caused by sampling or incur extra
communication cost.
t

p

a
t

u

o

this line requires that the output distribution of the local randomizer
can be decomposed into a uniform distribution and another distribution
expressed by an indicator function for true values. In contrast, the
second line is universal yet complicated. It needs to use some property
parameters of output distributions, which leads to a thorough analysis
required. Besides, Balle et al. (2019) have shown that the second
ine can derive a much better lower bound for privacy amplification.
lthough the above works proposed for a single categorical attribute
annot be used to solve our problem for multidimensional attributes,
he privacy amplification analysis techniques from Ref. Balle et al.

(2019) can inspire us to analyze the privacy amplification of shuffling
n the multidimensional setting.

There exist several works about multidimensional data publication
under LDP. They choose a dimension (Wang et al., 2019b) or traverse
ach dimension (Liu et al., 2024), and then publish the value from the

dimension by using the one-dimensional publication technique, such
as OUE (Wang et al., 2017), OLH (Wang et al., 2017) or PM (Wang
et al., 2019b). But these works under LDP cannot be directly used
for the SDP setting. As far as we know, there exist only three SDP-
based works (Scott et al., 2022; Liu et al., 2021; Wang et al., 2021a)
argeting at our problem. Their common idea is to reduce the multidi-

mensional user data into one dimension (attribute) and then invoke the
ingle-attribute-SDP techniques discussed above. Two of them resort to
ampling-based reduction, which is originally proposed in Section 4.B
f Ref. Wang et al. (2019b) for collecting multidimensional data under

LDP and also used in the following-up work (Wang et al., 2021b).
Scott et al. (2022) analyze the privacy amplification in a statistical

ay, which ignores the negative impact of non-deterministic shuffling
articipants caused by sampling. Liu et al. (2021) propose FLAME to
emedy this problem but complicates the shuffler design. Instead of
ampling, Wang et al. (2021a) propose TCM to transform the mul-

tidimensional data into the multiple values from a single attribute
(dimension) directly, but incurs heavy performance penalty. We will
show more details about FLAME and TCM in Section 3.3 since they are
the most related works. Table 1 classifies some important related works
about frequency distribution estimation in the LDP and SDP settings to
etter distinguish them from ours.

We are aware that our problem also equivalently exists when an-
wering the 𝑘-way marginal query and the range query. These queries

are answered by estimating frequency distribution on decomposed
multiple sketches which can be regarded as our dimensions. Existing
elated works (Zhang et al., 2018; Ren et al., 2018; Wang et al., 2022,

2019a; Yang et al., 2020; Du et al., 2021) mainly focus on bridging top-
level queries and bottom-level estimations. After that, they just simply
use LDP-compliant techniques for estimation, which is the focus of this
paper but we use the advanced SDP. Clearly, their technical contribu-
tions are completely orthogonal to ours. In fact, as analyzed above,
our SDP-compliant component can be plugged into their frameworks

to replace the built-in LDP-compliant component, so as to further boost

3 
answer utility. Our experiments have evaluated the performance of our
proposal on these queries.

Last, we outline existing works about personalized privacy expec-
ations. Pioneering works are related to CDP. Jorgensen et al. (2015)

use non-uniform sampling and exponential mechanism to publish data,
where the sampling probability and quality function are customized
by personalized privacy budgets. Li et al. (2017) propose to group
user data based on the different privacy preferences and then apply
a DP algorithm for each group. Niu et al. (2021) design an iterative
framework to publish data without privacy budget waste. There also
exist some works under LDP. Chen et al. (2016) design an efficient
ersonalized count estimation protocol. Nie et al. (2019) design a

recycle and combination framework for histogram estimation. Liu et al.
(2024) target at the limited personalized privacy scenario, where some
ttribute values are sensitive and some are not. They improve the
raditional OUE technique (Wang et al., 2017), in order to publish the

value from this kind of attributes with high utility. As far as we know,
there is no work under personalized SDP. Compared against CDP and
LDP, it is more difficult for SDP because the privacy amplification of
shuffling is sensitive to the number of participants, which complicates
the policy design for personalized privacy budgets.

3. Preliminaries

This section introduce necessary background knowledge about dif-
ferential privacy (Section 3.1), our problem definition (Section 3.2) and
the most representative related works (Section 3.3).

3.1. Differential privacy

The CDP setting involves a trusted curator and a number of (say, 𝑛)
sers, each of which, 𝑢𝑖 possesses a data record 𝑥𝑖 containing private

information. Since the curator is trustworthy, she has access to 𝑛
true data records directly. Thus, given a query, the curator can safely
publish the result of this query by perturbing the true answer with CDP,
which is defined as follows.

Definition 1 (Centralized Differential Privacy, CDP Dwork et al., 2006a).
A randomized function 𝑓 satisfies (𝜖 , 𝛿)-DP, where 𝜖 , 𝛿 ≥ 0, if and only
if for any two neighboring datasets 𝐷 and 𝐷′, and for any set 𝑂 of
possible outputs of 𝑓 , we have

Pr [𝑓 (𝐷) ∈ 𝑂] ≤ 𝑒𝜖 Pr [𝑓 (𝐷′) ∈ 𝑂] + 𝛿 .

We say two datasets are neighboring if and only if they differ in only
ne tuple. 𝜖 is called privacy budget, which controls the strength of

privacy protection. A smaller budget means stricter privacy protection.
When 𝛿 ≥ 0, (𝜖 , 𝛿)-DP is termed as approximate DP. When 𝛿 = 0, we
simplify the notation as 𝜖-DP and call it as pure DP. In this paper, we
are referring to both of them when saying DP; and if necessary, we
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distinguish them by the existence of the parameter 𝛿. Considering the
different protection expectations of users, we then give the personalized
CDP definition.

Definition 2 (Personalized CDP Jorgensen et al., 2015). For a personal-
ized privacy budget 𝑆 = {(𝜖1, 𝛿1),… , (𝜖𝑛, 𝛿𝑛)} and dataset 𝐷 consisting
of data from a set of users 𝑈 = {𝑢1,… , 𝑢𝑛}, where 𝑢𝑖 is with budget
(𝜖𝑖, 𝛿𝑖), a randomized function 𝑓 satisfies 𝑆-personalized DP, if and
nly if for any two neighboring datasets 𝐷 and 𝐷′ which differ in one
rbitrary user 𝑢𝑖, and for any set 𝑂 of possible outputs of 𝑓 , we have

Pr [𝑓 (𝐷) ∈ 𝑂] ≤ 𝑒𝜖𝑖 Pr [𝑓 (𝐷′) ∈ 𝑂] + 𝛿𝑖.

However, the trusted curator assumption in CDP is too strong to be
held true in many real scenarios. To protect privacy, records cannot
leave the user side. Thus, each user has to perturb her data locally
before sending it to the non-trusted curator. The latter answers queries
based on noisy information. The following defined LDP model can
handle this scenario.

Definition 3 (Local Differential Privacy, LDP Erlingsson et al., 2014). A
andomized function 𝑓 satisfies (𝜖 , 𝛿)-LDP if and only if for any two

tuples 𝑥𝑖 and 𝑥′𝑖 , and for any set 𝑂 of possible outputs of 𝑓 , we have

Pr [𝑓 (𝑥𝑖) ∈ 𝑂] ≤ 𝑒𝜖 Pr [𝑓 (𝑥′𝑖) ∈ 𝑂] + 𝛿 .

Like 𝜖-DP, most of LDP works focus on the case with 𝛿 = 0, i.e., 𝜖-
DP. Since LDP answers the query based on 𝑛 noisy reports, a lot of
oise will be incurred and then yield accuracy penalty. For noise reduc-
ion, a new model is proposed with an additional shuffling component,
ermed as Shuffled Differential Privacy (SDP) (Balle et al., 2019).

Compared with LDP, the biggest difference in SDP is a new trusted
huffler between users and the non-trusted curator. It permutes noisy
eports once they are all received from 𝑛 users and hence makes

them anonymous to the curator. Now the adversary cannot link a
specific user to her report, which brings privacy amplification. The
noisy reports are generated by perturbing user data through a local
randomizer 𝑅 ∶ 𝑋 → 𝑌 , resembling LDP. Here 𝑋 is the raw record
domain and 𝑌 is the perturbed domain. A function 𝑆 ∶ 𝑌 𝑛 → 𝑌 𝑛 is
then used to permute/shuffle 𝑛 record reports.

Suppose 𝑅 in LDP satisfies 𝜖𝑙-LDP and 𝑀 = 𝑆◦𝑅 ∶ 𝑋𝑛 → 𝑌 𝑛 in SDP
atisfies (𝜖𝑠, 𝛿𝑠)-DP. (𝜖𝑠, 𝛿𝑠) is guaranteed by adding noise in the first
hase and shuffling in the second phase; while, 𝜖𝑙 is guaranteed solely

by adding noise. LDP as a component actually works in the first phase
f SDP. Undoubtedly, when adding the same noise, benefitting from
rivacy amplification in the second phase, the output of 𝑀 in SDP can
rovide much more stricter privacy protection than the one of the sole

in LDP, i.e., 𝜖𝑠 < 𝜖𝑙. In reverse, from the perspective of end-users,
ive the same protection requirement, the LDP-component in SDP adds
mall noise, and hence can improve the accuracy of final results.

Such a shuffling design in SDP is simple yet effective, but a new
hallenge is how to exactly evaluate its amplified privacy. If a strictly
ower bound is known, then SDP can add noise as small as possible for
he LDP component in the first phase.

Nowadays, the up-to-date privacy amplification analysis works
(Wang et al., 2020; Li et al., 2020; Wang et al., 2021a) use the privacy
lanket technique (Balle et al., 2019). Its core idea is to decompose the

local randomizer 𝑅 into two parts: with probability 𝛾 it reports a value
following a probability mass function (pmf) 𝑣𝑥𝑖 dependent on the true
alue 𝑥𝑖 ∈ 𝑋; with probability 1 −𝛾 it reports a uniformly random value
ollowing pmf 𝜔 independent of 𝑥𝑖, where 𝜔 is referred to as privacy
lanket distribution. So the pmf with true data 𝑥𝑖 of 𝑅 can be written as

𝑟𝑥𝑖 = (1 − 𝛾)𝑣𝑥𝑖 + 𝛾 𝜔.

Obviously, the privacy blanket distribution can hide the reports
from 𝑣𝑥𝑖 to some extent. Privacy amplification random variable is used
to quantify the level of hiding, which is defined as follows:
4 
𝐿
𝑥𝑖 ,𝑥′𝑖
𝜖𝑠 =

𝑟𝑥𝑖 (𝑊 ) − 𝑒𝜖𝑠 𝑟𝑥′𝑖 (𝑊 )

𝜔(𝑊 )
where 𝑊 ∼ 𝜔 is a random variable sampled from 𝜔.

By Ref. Balle et al. (2019), based on properties of 𝐿𝑥𝑖 ,𝑥′𝑖
𝜖𝑠 , Lemma 1

gives the hockey-stick divergence of order 𝑒𝜖𝑠 between 𝑀(𝐷) and
𝑀(𝐷′) on any pair of neighboring datasets 𝐷 and 𝐷′.

Lemma 1. Given fixed 𝜖𝑠 ≥ 0 and any pair of neighboring datasets
𝐷 , 𝐷′ ∈ 𝑋𝑛 differing in the 𝑛th user’s data, i.e., 𝑥𝑛 ≠ 𝑥′𝑛, let 𝐿

𝑥𝑛 ,𝑥′𝑛
𝜖𝑠 be

the privacy amplification random variable with 𝐸 𝐿𝑥𝑛 ,𝑥′𝑛
𝜖𝑠 = 1 −𝑒𝜖𝑠 = −𝑎 ≤ 0,

𝐸(𝐿𝑥𝑛 ,𝑥′𝑛
𝜖𝑠 )2 ≤ 𝑐 and 𝑏− ≤ 𝐿𝑥𝑛 ,𝑥′𝑛

𝜖𝑠 ≤ 𝑏+. 𝛾 is the probability to report a value
from the pdf of 𝜔. Then the hockey-stick divergence of order 𝑒𝜖𝑠 between

(𝐷) and 𝑀(𝐷′) is

𝐷𝑒𝜖𝑠 (𝑀(𝐷) ∥ 𝑀(𝐷′)) ≤ 1
𝛾 𝑛

𝑛
∑

𝑚=1

(

𝑛
𝑚

)

𝛾𝑚(1 − 𝛾)𝑛−𝑚𝛽(𝑎, 𝑏, 𝑐 , 𝑚)

where 𝛽(𝑎, 𝑏, 𝑐 , 𝑚) = 𝑏+
𝑎𝑚 log

(

1+ 𝑎𝑏+
𝑐

) 𝑒
−𝑚𝑐
𝑏2+

𝜙
( 𝑎𝑏+

𝑐

)

, and 𝜙(𝑥) = (1 + 𝑥) log(1 +
𝑥) − 𝑥.

Lemma 2 (Barthe and Olmedo, 2013) shows the relationship be-
tween hockey-stick divergence and (𝜖𝑠, 𝛿𝑠)- DP.

Lemma 2. A mechanism 𝑀 ∶ 𝑋𝑛 → 𝑌 is (𝜖, 𝛿)-DP if and only if
𝐷𝑒𝜖 (𝑀(𝐷) ∥ 𝑀(𝐷′)) ≤ 𝛿 for any neighboring datasets 𝐷 and 𝐷′.

Accordingly, to infer amplified privacy, we can analyze the pmf
used in 𝑅 to derive 𝜖𝑙-related expressions about parameters 𝑎, 𝑏−, 𝑏+
nd 𝑐. Together with Lemmas 1 and 2, then we can get the relationship

between 𝜖𝑙 with 𝜖𝑠 and 𝛿𝑠. Given 𝜖𝑙 (𝜖𝑠) and 𝛿𝑠, 𝜖𝑠 (𝜖𝑙) is derived.

3.2. Problem definition

This paper focuses on frequency distribution estimations on multidi-
mensional categorical data under SDP. Each user first invokes an LDP
component to perturb her own private data and then reports a noisy
version to the shuffler. Once all 𝑛 reports are received, the shuffler
permutes them before sending them to the non-trusted curator. The
latter finally executes the frequency estimation task to answer queries.
Now our goal is to maximize the accuracy of answers, while satisfying
(𝜖𝑠, 𝛿𝑠)-DP privacy protection required by end-users.

More formally, each user 𝑢𝑖’s private record data 𝑥𝑖 contains 𝑑
ategorical attributes 𝐴1, 𝐴2, . . . , and 𝐴𝑑 , and 𝑥𝑖𝑗 denotes the value
f 𝐴𝑗 . Let 𝐶𝑖 indicate the domain of 𝐴𝑖 (1 ≤ 𝑖 ≤ 𝑑). Without loss of
enerality, we assume that attribute 𝐴𝑖 with |𝐶𝑖| distinct values has a
iscrete domain 𝐶𝑖 = {1, 2,… , |𝐶𝑖|}. Thus, the curator actually performs

frequency estimation on the domains of 𝑑 attributes. Let 𝐹 be the true
frequency distribution, in which 𝐹𝑘 and 𝐹𝑘𝑗 are respectively associated
with 𝐴𝑘 and the specific value 𝑗 within it, i.e., 𝐹𝑘𝑗 = |{𝑢𝑖|𝑥𝑖𝑘=𝑗}|

𝑛 .
We evaluate the accuracy by comparing the derived noisy estimation
against 𝐹 .

3.3. Existing methods

Since there are not SDP-based methodologies which can be directly
applied for solving our multidimensional categorical problem, we try
to use the variants of existing single-dimension SDP solutions to cope

ith encountered challenges. We next overview the sampling and the
ransforming representatives.

FLAME: sampling mechanism with dummy padding (Liu et al.,
2021). FLAME asks each user 𝑢𝑖 to randomly sample a dimension index
𝑠𝑖 from [𝑑], so as to reduce multiple dimensions into a single one. 𝑢𝑖
then perturbs the value in 𝑠𝑖 as 𝑦∗𝑖 using the Randomized Response
technique (Warner, 1965) with privacy budget 𝜖𝑙 𝑠𝑖 . The resulting pair
(𝑠 , 𝑦∗) is sent to the shuffler. Once the latter receives reports from all
𝑖 𝑖



N. Wang et al.

S

s

f

w

n
i
d

i

t
𝑢
t
r
b
s
t
m
e
i
‘

t
t
a
c

d

c

u
S

i

u

h
b
h
i

h
d
d
o
t

Computers & Security 151 (2025) 104301 
𝑛 users, she counts the numbers of reports related to each dimension.
uch numbers are clearly non-deterministic because of the random

sampling. That challenges the analysis of privacy amplification since a
bounded-size database is required (Balle et al., 2019). FLAME thereby
assumes a uniform number 𝑁𝑝 which is much greater than the average
𝑛
𝑑 and typically set as 𝑛

3 by default. If the real number related to
ome dimension does not reach the pre-assumed threshold, the shuffler

should add some dummy pairs, each of which consists of this dimension
index and a random value from its domain. Following that, the shuffler
permutes 𝑑 ⋅𝑁𝑝 pairs and then sends them to the curator, to compute
the frequency estimation.

Let the final published result satisfy (𝜖𝑠, 𝛿𝑠)-DP. The budget 𝜖𝑙 𝑗 used

or the 𝑗th dimension can be computed by log
(

(𝑁𝑝−1)𝜖2𝑐 𝑘
14𝑘 log(2∕(𝑑 𝛿𝑠)) − 𝑘 + 1

)

,

here 𝜖𝑐 𝑘 = log(𝑑(𝑒
𝜖𝑠
2 − 1) + 1) and 𝑘 denotes the domain size of

this dimension. The relationship between 𝜖𝑙 𝑗 and (𝜖𝑠, 𝛿𝑠) is derived by
considering the composition property of DP (McSherry, 2009), and the
privacy amplification effectiveness for sampling (Balle et al., 2018) and
shuffling (Balle et al., 2019).

Traditionally, the shuffler in SDP is intelligent-unable, which can do
othing except shuffling. The additional counting and adding functions
n FLAME poses new implementation challenges in practice. Besides,
ummy pairs also incurs errors.

TCM: collision mechanism with transformation
(Wang et al., 2021a). Since TCM is a variant of the collision mechanism
(CM), we first introduce the latter. CM can publish SDP-compliant
frequency distribution estimation on a single categorical attribute. Each
user 𝑢𝑖 processes 𝑚 categorical values from attribute 𝐴𝑗 . Let 𝑥𝑖 =
{𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑚} be the record of 𝑢𝑖, where 𝑥𝑖𝑘 ∈ 𝐶𝑗 and 𝐶𝑗 denotes this
attribute domain. Like FLAME, 𝑢𝑖 also reports one pair to the shuffler
but with privacy budget 𝜖𝑙 = log

(

𝜖2(𝑛−1)
14𝑚 log(2∕𝛿) −

𝑔
𝑚 + 1

)

and different pair

value. In particular, 𝑢𝑖 firstly chooses a function ℎ𝑖 from the universal
hash function family , and then sequentially hashes elements in 𝑥𝑖
nto 𝑚 values (denoted by y𝑖) in [𝑔], where 𝑔 = 2𝑚 − 1 + 𝑚𝑒𝜖𝑙 . Note

that |y(𝑥𝑖)| may be less than 𝑚 due to hash collision. The reported
value is from [𝑔], and candidates in 𝐲𝑖 ⊆ [𝑔] should be selected in high
probability, which is guaranteed by the following selection probability
distribution, where 𝑝 = 𝑒𝜖𝑙

𝑚𝑒𝜖𝑙+𝑔−𝑚 :

Pr (𝑦∗𝑖 = 𝑗) =
⎧

⎪

⎨

⎪

⎩

𝑝, if 𝑗 ∈ 𝐲(𝑥𝑖),
1−|𝐲(𝑥𝑖)|𝑝
𝑔−|𝐲(𝑥𝑖)|

, if 𝑗 ∉ 𝐲(𝑥𝑖).
(1)

The pair value is then ⟨ℎ𝑖, 𝑦∗𝑖 ⟩ consisting of the used hash function
and perturbed value. As usual, the shuffler permutes received reports
and then sends them to the curator. In particular, the latter employs a
vector 𝐹 ∗

𝑗 with size |𝐶𝑗 | to record the frequency distribution on 𝐴𝑗 .
More specifically, for ⟨ℎ𝑖, 𝑦∗𝑖 ⟩, if ℎ𝑖(𝑘) = 𝑦∗𝑖 , 𝐹 ∗

𝑗 𝑘 increases by 1. The

curator regards
𝐹 ∗
𝑗⋅−𝑛∕𝑔

𝑝−1∕𝑔 as the unbiased frequency estimation.
CM is only suitable for collecting multi-values from a single at-

ribute, instead of multi-attributes. To fully utilize CM, for each user
𝑖, we can encode her values from multi-attributes as new items and
hen transform them into the set 𝑥𝑖. In another word, these items are
egarded as multi values from some virtual attribute. Then CM can
e utilized for data collection. For 𝑑 dimensions, the total number of
uch items is ∑𝑑

𝑖=1 |𝐶𝑖|. We term this CM variant as TCM. However,
he raw values from different dimensions should have distinct physical
eanings but their expression might be the same. For example, there

xist two attributes gender and marital status. Both might have ‘‘M’’
n their domains but the meaning is very different, i.e., it indicates
‘male’’ for the former and ‘‘married’’ for the latter. This essentially
requires the curator to make an encoding rule and then broadcast it
o all users. Then we can guarantee that distributed users can consis-
ently encode such values as distinctly different items. As a side-effect,
dditional communication costs (broadcasting rule) and computation
osts (encoding) are incurred, compared with the original CM.
5 
4. Multidimensional categorical data collection under SDP

This section introduces a new method termed as multiple hash
mechanism (MHM) for multidimensional categorical data collection un-
er SDP, without padding or encoding operations. Section 4.1 describes

the procedure of this mechanism, and Section 4.2 does a thorough
analysis of privacy amplification.

4.1. Multiple hash mechanism

As introduced in Section 3.3, although the function of the shuf-
fler involved in TCM is consistent with that in the traditional SDP
model, it generates additional efficiency penalty from perspectives of
communication and computation, due to the extra encoding operation.
This section thereby designs a new strategy termed as multiple hash
mechanism based on TCM. It preserves accuracy but eliminates the
omplex encoding step, in order to improve the efficiency of TCM.

As shown in Fig. 1, the framework of MHM which guarantees
(𝜖𝑠, 𝛿𝑠)-DP involves three parts, 𝑛 users, a curator and a shuffler. On
the user side of user 𝑢𝑖, she invokes the local randomizer component
with privacy budget 𝜖𝑙 to perturb her data and sends the perturbed
values to the shuffler. And once the latter receives the messages from all
sers, she permutes them and sends the permuted results to the curator.
ince the shuffler brings privacy amplification, to make the permutated

results from the shuffler guarantee (𝜖𝑠, 𝛿𝑠)-DP, privacy budget 𝜖𝑙 bigger
than 𝜖𝑠 is used to perturb the data on the user side. And we will
illustrate how to compute 𝜖𝑙 in Section 4.2. Note that the function of
the shuffler in MHM is consistent with the one in the traditional SDP
model, which is just responsible for permuting the reported messages
from users. Following that, the curator does frequency distribution
estimation on her received messages. Compared with the simple and
generalized operation brought by the shuffler, the ones implemented
on the user side and curator side are customized for our application,
which are elaborated detailedly in the following.

Operations on the user side. The key idea of MHM is that each
user 𝑢𝑖 adopts 𝑑 hash functions to respectively hash her 𝑑 data in 𝑥𝑖
to the domain [𝑔], instead of using one hash function in TCM. In this
way, the same value from different dimensions can be hashed into two
different values in [𝑔] with high probability, so that the same value can
be distinguishable. On the other hand, since 𝑑 values are all hashed
into [𝑔], each one in [𝑔] carries the information from all dimensions.
As a result of that, publishing the hash value contributes to improving
accuracy, due to consuming a part of privacy budget and achieving the
ntegrated information of multiple dimensions. Algorithm 1 shows how

MHM works on the user side. In particular, as shown in Fig. 1, on the
ser side of 𝑢𝑖 with true data 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑑 ), for any dimension 𝑗,

𝑢𝑖 samples a hash function ℎ𝑖𝑗 from the hash function family  and
computes the hash value 𝑦𝑖𝑗 = ℎ𝑖𝑗 (𝑥𝑖𝑗 ). Let HR be a set storing the
ash values of all dimensions and 𝓁 be the size of HR. Note that 𝓁 may
e smaller than 𝑑, since the values from different dimensions may be
ashed into one value. Then we borrow the probability density function
n Eq. (1) used in CM to publish a value on [𝑔], which is implemented

in Lines 7–11 of Algorithm 1. Then 𝑢𝑖 reports the perturbed value as
well as 𝑑 hash functions to curator.

Note that MHM uses multi-hash functions. It is inefficient to trans-
mit 𝑑 indexes. Here, we design a trick, i.e., each user just samples a
ash function ℎ𝑖 with index 𝑖 in the hash function family for the first
imension and allocates the hash function with index ℎ𝑖+𝑗−1 for the 𝑗th
imension directly. In this way, it is enough to transmit the information
f hash function for the first dimension. In the following, we use MHM
o indicate the version with the communication optimization.

Afterwards, 𝑢𝑖 sends the pair ⟨ℎ𝑖, 𝑦∗𝑖 ⟩ consisting of the used hash
function and perturbed value to the shuffler. Once the shuffler receives
the reported messages from 𝑛 users, she permutes them and sends them
to the curator.
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Fig. 1. The framework of MHM.
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Algorithm 1: MHM on the user side
Input : True data 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖𝑑 ), hash function family ,

privacy budget 𝜖.
Output: 𝑑 random hash functions (ℎ𝑖1, ℎ𝑖2, ..., ℎ𝑖𝑑 ) and a

perturbed value 𝑦∗𝑖 .
1 HR ={};
2 for 𝑗 from 1 to 𝑑 do
3 Choose a random hash function ℎ𝑖𝑗 from ;
4 Use ℎ𝑖𝑗 to hash the 𝑗th value 𝑥𝑖𝑗 , i.e., 𝑦𝑖𝑗 = ℎ𝑖𝑗 (𝑥𝑖𝑗 );
5 HR← HR∪{𝑦𝑖𝑗};
6 𝓁 = |HR|;
7 Sample 𝑢𝑟 uniformly at random from [0, 1];
8 if 𝑢𝑟 ≤ 𝓁 ⋅ 𝑝 then
9 Sample 𝑦∗𝑖 uniformly from HR;
10 else
11 Sample 𝑦∗𝑖 uniformly from [𝑔]∕HR;
12 return (ℎ𝑖1, ℎ𝑖2, ..., ℎ𝑖𝑑 , 𝑦∗𝑖 );

Operations on the curator side. On the curator side, curator
omputes the frequency distribution based on the reports from 𝑛 users.
n particular, for the report (ℎ𝑖, 𝑦∗𝑖 ) from 𝑢𝑖, each dimension is traversed.

For the 𝑗th dimension, hash function ℎ𝑖+𝑗−1 with index 𝑖+ 𝑗 − 1 is used
to find the values in her domain 𝐶𝑗 whose hash values are equal to 𝑦∗𝑖 .
If ℎ𝑖+𝑗−1(𝑘) = 𝑦∗𝑖 , 𝐹

∗
𝑗 𝑘 increases by 1. The curator regards

𝐹 ∗
𝑗⋅−𝑛𝑞

𝑝−𝑞 as the
nbiased frequency estimation, where 𝑝 = 𝑒𝜖𝑙

𝑒𝜖𝑙+𝑔−𝑑 and 𝑞 = 1
𝑔 . And the

rocess of frequency computation is described by Algorithm 2.

Lemmas 3 and 4 discuss the privacy guarantee and variance of the
published result provided by the component used on the user side in
MHM.

Lemma 3. Algorithm 1 satisfies 𝜖𝑙-local differential privacy.

Proof. For any output (ℎ𝑖, 𝑦∗𝑖 ) ∈  × [𝑔] and any two tuples 𝑥𝑖, 𝑥′𝑖 ∈
𝐶 × 𝐶 ×⋯ × 𝐶 , we have
1 2 𝑑

6 
Algorithm 2: MHM on the curator side
Input : Reported messages (ℎ𝑖1, ℎ𝑖2, ..., ℎ𝑖𝑑 , 𝑦∗𝑖 )(1 ≤ 𝑖 ≤ 𝑛) from 𝑛

users.
Output: An unbiased estimator 𝐹 ∗ of the true frequency

estimation on 𝑑-dimensional categorical data.
1 𝐹 ∗ = {𝐹 ∗

1 , 𝐹 ∗
2 , ..., 𝐹 ∗

𝑑 }, 𝐹
∗
𝑗 denotes the frequency distribution on

Attribute 𝐴𝑗 ;
2 for 𝑖 = 1 to 𝑛 do
3 for 𝑗 = 1 to 𝑑 do
4 for 𝑐 ∈ 𝐶𝑗 do
5 if ℎ𝑖+𝑗−1(𝑐) = 𝑦∗𝑖 then
6 𝐹 ∗

𝑗 𝑐 = 𝐹 ∗
𝑗 𝑐 + 1;

7 for 𝑗 = 1 to 𝑑 do
8 𝐹 ∗

𝑗 = 1
𝑛 ⋅

𝐹 ∗
𝑗 −𝑛𝑞

𝑝−𝑞 ;

9 return 𝐹 ∗;

Pr [MHM𝑢(𝑥𝑖) = (ℎ𝑖, 𝑦∗𝑖 )]
Pr [MHM𝑢(𝑥′𝑖) = (ℎ𝑖, 𝑦∗𝑖 )]
1

||

⋅ Pr [𝑦∗𝑖 |{ℎ𝑖(𝑥𝑖1),… , ℎ𝑖+𝑑−1(𝑥𝑖𝑑 )}]
1

||

⋅ Pr [𝑦∗𝑖 |{ℎ𝑖(𝑥′𝑖1),… , ℎ𝑖+𝑑−1(𝑥′𝑖𝑑 )}]

Based on Eq. (1), we observe that the ratio of maximum and
minimum on the probability distribution of the perturbing mechanism
is bounded by 𝑒𝜖𝑙 . So we have Pr [𝑦∗𝑖 |{ℎ𝑖(𝑥𝑖1),… , ℎ𝑖+𝑑−1(𝑥𝑖𝑑 )}] ≤ exp(𝜖) Pr
𝑦∗𝑖 |{ℎ𝑖(𝑥

′
𝑖1),… , ℎ𝑖+𝑑−1(𝑥′𝑖𝑑 )}]. Obviously, the above equation is also

ounded by exp(𝜖𝑙). □

Lemma 4. The estimated frequency for the value 𝑚 in the attribute 𝐴𝑗 is
unbiased and its variance is 𝑞(1−𝑞)+𝐹𝑗 𝑚(𝑝−𝑞)(1−𝑝−𝑞)

𝑛(𝑝−𝑞)2 , where 𝑝 = 𝑒𝜖𝑙
𝑒𝜖𝑙+𝑔−𝑑 and

= 1
𝑔 .

Since this lemma can be proved in a similar way to that in CM
Wang et al., 2021a), we omit the proof. Similar with that in Ref. Wang

et al. (2017), we approximate the variance of 𝑉 𝑎𝑟 [𝐹 ∗ ] by Eq. (2)
MHM 𝑗 𝑚
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Table 2
Comparisons on communication cost, computation cost from the user side and computa-
ion cost from the server side for FLAME, TCM and MHM. 𝛥 denotes the communication

cost of transmitting the encoding rule of attribute values.
Methods FLAME TCM MHM

Comm. 𝑂
(

log(𝑑 𝐶𝑖)
)

𝑂 (log(𝑛𝑔)) + 𝛥 𝑂 (log(𝑛𝑔))
Comp.(user) 𝑂 (1) 𝑂 (𝑑) 𝑂 (𝑑)
Comp.(server) 𝑂 (𝑛) 𝑂

(

𝑛
∑

𝑖 𝐶𝑖
)

𝑂
(

𝑛
∑

𝑖 𝐶𝑖
)

and then infer the optimal 𝑔 value, i.e., 𝑔MHM, as shown in Eq. (3).

𝑉 𝑎𝑟MHM[𝐹 ∗
𝑗 𝑚] ≈

𝑞(1 − 𝑞)
𝑛(𝑝 − 𝑞)2

. (2)

𝑔MHM = 𝑑 + 𝑑 𝑒𝜖𝑙
2

+
√

2𝑑2𝑒𝜖𝑙 + 𝑑2𝑒2𝜖𝑙
4

− 2𝑑 𝑒𝜖𝑙 . (3)

Analysis of communication and computation costs. In MHM, each
user needs to send two kinds of information, including the hash func-
tion index for the first dimension and the perturbed value. The latter
can be encoded by 𝑂(log(𝑔)) bits. As for the hash function, it can be
encoded using an index for the family  and takes 𝑂(log(𝑛)) bits. So the
communication cost is 𝑂(log(𝑔 𝑛)) in total. The computation cost on the
user side is 𝑂(𝑑), due to hashing 𝑑 values. As for the curator side, the
time cost is 𝑂(𝑛

∑

|𝐶𝑖|). Table 2 shows the theoretical communication
ost, computation cost on the user(server) side for the methods includ-
ng FLAME, TCM and MHM. It is observed that the compared FLAME
utperforms the other two methods on both communication cost and
omputation cost. But its performance on the result utility is inferior,

which is validated in the experiment part. Besides, MHM has a similar
performance with TCM, except that TCM has a bigger communication
cost due to the encoding operation for different attribute values.

4.2. Privacy amplification analysis for MHM

The skeleton of MHM under SDP is clear, but the hard nut to crack
is analyzing the relationship between 𝜖𝑙 and (𝜖𝑠, 𝛿𝑠). The key is to
estimate the amplified privacy brought by the shuffling operation—the
core component under SDP. Thus, in the following, we will discuss the
privacy amplification of shuffling generated in MHM.

In MHM, the shuffler does the permutation on the outputs from
users, each of which is one pair consisting of a hash function for

he first dimension and a perturbed value. Since the above pair is a
asic unit involved in the permutation, we firstly show the probability
ass function associated with the local randomizer on the basic unit’s
omain  × [𝑔], and then analyze some properties of this pmf to derive

the amplified privacy.
Given the true data 𝑥𝑖 of user 𝑢𝑖, let 𝑟𝑥𝑖 (ℎ𝑖, 𝑦∗𝑖 ) be the probability

that local randomizer outputs (ℎ𝑖, 𝑦∗𝑖 ) ∈  × [𝑔], whose value is shown
in Eq. (4).

𝑟𝑥𝑖 (ℎ𝑖, 𝑦∗𝑖 ) =
⎧

⎪

⎨

⎪

⎩

𝑝
||

, if 𝑦∗𝑖 ∈ 𝐲(𝑥𝑖),
1−𝑝𝓁

||⋅(𝑔−𝓁) , if 𝑦∗𝑖 ∉ 𝐲(𝑥𝑖).
(4)

where 𝐲(𝑥𝑖) = {ℎ𝑖(𝑥𝑖1)} ∪ {ℎ𝑖+1(𝑥𝑖2)},… ,∪{ℎ𝑖+𝑑−1(𝑥𝑖𝑑 )}, and 𝓁 is the size
f 𝐲(𝑥𝑖).

Then 𝑟𝑥𝑖 (ℎ𝑖, 𝑦∗𝑖 ) can be decomposed into

𝑟𝑥𝑖 (ℎ𝑖, 𝑦∗𝑖 ) = (1 − 𝛾)𝑣𝑥𝑖 (ℎ𝑖, 𝑦∗𝑖 ) + 𝛾 𝜔(ℎ𝑖, 𝑦∗𝑖 )
where 𝑣𝑥𝑖 (ℎ𝑖, 𝑦∗𝑖 ) shown in Eq. (5) is the distribution that depends on
he true data 𝑥𝑖. And 𝜔(ℎ𝑖, 𝑦∗𝑖 ) is the blanket distribution which is a
niform distribution on  × [𝑔], i.e., 𝜔(ℎ𝑖, 𝑦∗𝑖 ) = 1

||⋅𝑔 . With probability
 −𝛾, the output is dependent on the true data, where 𝛾 = 𝑔

𝑑 𝑒𝜖𝑙+𝑔−𝑑 ; and
ith probability 𝛾, the output is random.

𝑣𝑥𝑖 (ℎ𝑖, 𝑦∗𝑖 ) =
⎧

⎪

⎨

⎪

1
||⋅𝑑 , 𝑦∗𝑖 ∈ 𝐲(𝑥𝑖)

𝑑−𝓁 , 𝑦∗ ∉ 𝐲(𝑥𝑖)
(5)
⎩

||⋅𝑑(𝑔−𝓁) 𝑖
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Recall that to derive the amplified privacy brought by shuffling, we
need to use some information of privacy amplification random variable as-
sociated with 𝑟𝑥𝑖 (ℎ𝑖, 𝑦∗𝑖 ) to compute the upper bound of the hockey-stick
divergence of order 𝑒𝜖𝑠 between MHM(D) and MHM(D′). Theorem 1
discusses the settings of used information based on the pmf 𝑟𝑥𝑖 (ℎ𝑖, 𝑦∗𝑖 )
of the local randomizer in MHM and its decompositions.

Theorem 1. Given the local randomizer of MHM with privacy budget 𝜖𝑙
or any 𝜖𝑠 ≥ 0 and 𝑥𝑖, 𝑥′𝑖 ∈ 𝐶1 ×⋯ × 𝐶𝑑 , the privacy amplification random
ariable 𝐿𝑥𝑖 ,𝑥′𝑖

𝜖𝑠 associated with the local randomizer satisfies:

1. E𝐿𝑥𝑖 ,𝑥′𝑖
𝜖𝑠 = 1 − 𝑒𝜖𝑠

2. 𝛾(1 − 𝑒𝜖𝑠 ) − (1 − 𝛾) 𝑔 𝑒𝜖𝑠𝑑 ≤ 𝐿
𝑥𝑖 ,𝑥′𝑖
𝜖𝑠 ≤ 𝛾(1 − 𝑒𝜖𝑠 ) + (1 − 𝛾) 𝑔𝑑

3. E(𝐿𝑥𝑖 ,𝑥′𝑖
𝜖𝑠 )2 ≤ (𝑒2𝜖𝑠 + 1) 𝑝2𝑑 𝑔2−2𝑝𝑑 𝑔+𝑔𝑔−𝑑 − 2𝑒𝜖𝑠 𝑔(1−𝑝𝑑)(𝑔+𝑔 𝑝𝑑−2𝑑)

(𝑔−𝑑)2

Proof. (1) Since the proof is similar to that in Balle et al. (2019) we
omit them. (2) Next, we discuss the lower bound and upper bound of
𝐿
𝑥𝑖 ,𝑥′𝑖
𝜖𝑠 . Since 𝑟𝑥𝑖 (ℎ𝑖, 𝑦∗𝑖 ) can be written as (1 − 𝛾)𝑣𝑥𝑖 (ℎ𝑖, 𝑦∗𝑖 ) + 𝛾 𝜔(ℎ𝑖, 𝑦∗𝑖 ), we

have

𝐿
𝑥𝑖 ,𝑥′𝑖
𝜖𝑠 =

𝑟𝑥𝑖 (ℎ𝑖, 𝑦∗𝑖 ) − 𝑒𝜖𝑠 𝑟𝑥′𝑖 (ℎ𝑖, 𝑦
∗
𝑖 )

𝜔(ℎ𝑖, 𝑦∗𝑖 )
= 𝛾(1 − 𝑒𝜖𝑠 ) + (1 − 𝛾) ⋅ ||𝑔 ⋅

[

𝑣𝑥𝑖 (ℎ𝑖, 𝑦∗𝑖 ) − 𝑒𝜖𝑠𝑣𝑥′𝑖 (ℎ𝑖, 𝑦
∗
𝑖 )
]

(6)

To derive the range of 𝐿
𝑥𝑖 ,𝑥′𝑖
𝜖𝑠 , we analyze the range of 𝑣𝑥𝑖 (ℎ𝑖, 𝑦∗𝑖 ) −

𝑒𝜖𝑠𝑣𝑥′𝑖 (ℎ𝑖, 𝑦
∗
𝑖 ) firstly. Specifically, as shown in Eq. (5), if 𝑦∗𝑖 ∉ 𝐲(𝑥𝑖), the

robability 𝑣𝑥𝑖 (ℎ𝑖, 𝑦∗𝑖 ) is 𝑑−𝓁
||⋅𝑑(𝑔−𝓁) , which is changed with different 𝓁.

et 𝑓 (𝓁) be 𝑑−𝓁
||⋅𝑑(𝑔−𝓁) , where 𝓁 ∈ [1, 𝑑]. Then the first-order derivative

of 𝑓 (𝓁) is as follows:

𝑓 ′(𝓁) = ||𝑑(𝑑 − 𝑔)
||

2𝑑2(𝑔 − 𝓁)2
.

Obviously, 𝑓 (𝓁) is a monotonic decreasing function, since 𝑑 ≤ 𝑔.
s a result, 𝑓 (𝓁) ∈ [0, 𝑑−1

||𝑑(𝑔−1) ]. On the other hand, when 𝑦∗𝑖 ∈ 𝐲(𝑥𝑖),

𝑥𝑖 (ℎ𝑖, 𝑦∗𝑖 ) is 1
||⋅𝑑 bigger than 𝑑−1

||𝑑(𝑔−1) . Then the range of 𝑣𝑥𝑖 (ℎ𝑖, 𝑦𝑖) is
[0, 1

||⋅𝑑 ]. Together with Eq. (6), we have

𝐿
𝑥𝑖 ,𝑥′𝑖
𝜖𝑠 ∈

[

𝛾(1 − 𝑒𝜖𝑠 ) − (1 − 𝛾)
𝑔 𝑒𝜖𝑠
𝑑

, 𝛾(1 − 𝑒𝜖𝑠 ) + (1 − 𝛾)
𝑔
𝑑

]

(3) Finally, we discuss the upper bound for the expectation of
(𝐿

𝑥𝑖 ,𝑥′𝑖
𝜖𝑠 )2. Let 𝑊 ∼ 𝜔(ℎ𝑖, 𝑦∗𝑖 ). E(𝐿

𝑥𝑖 ,𝑥′𝑖
𝜖𝑠 )2 can be written as follows:

E
⎡

⎢

⎢

⎣

(

𝑟𝑥𝑖 (𝑊 ) − 𝑒𝜖𝑠 𝑟𝑥′𝑖 (𝑊 )

𝜔(𝑊 )

)2
⎤

⎥

⎥

⎦

=(𝑒2𝜖𝑠 + 1)E
⎡

⎢

⎢

⎣

(

𝑟𝑥𝑖 (𝑊 )
𝜔(𝑊 )

)2
⎤

⎥

⎥

⎦

− 2𝑒𝜖𝑠E
[

𝑟𝑥𝑖 (𝑊 ) ⋅ 𝑟𝑥′𝑖 (𝑊 )

(𝜔(𝑊 ))2

]

(7)

To derive the upper bound of E(𝐿
𝑥𝑖 ,𝑥′𝑖
𝜖𝑠 )2, we analyze the values of

E
[

( 𝑟𝑥𝑖 (𝑊 )
𝜔(𝑊 )

)2]

and E
[ 𝑟𝑥𝑖 (𝑊 )⋅𝑟𝑥′𝑖

(𝑊 )

(𝜔(𝑊 ))2

]

respectively in the following. Note

that we omit the details of the derivations for Eqs. (8) and (9) for
brevity. Please refer to the supplementary material (Appendix A) for
details.

Since 𝑊 ∼ 𝜔(ℎ𝑖, 𝑦∗𝑖 ), we have

E
⎡

⎢

⎢

⎣

(

𝑟𝑥𝑖 (𝑊 )
𝜔(𝑊 )

)2
⎤

⎥

⎥

⎦

=
∑

𝑊 ∈×[𝑔]

(

𝑟𝑥𝑖 (𝑊 )
𝜔(𝑊 )

)2

× 𝜔(𝑊 )

≤ 𝑝2𝑑 𝑔2 − 2𝑝𝑑 𝑔 + 𝑔 (8)

𝑔 − 𝑑
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Next, we discuss the lower bound of E
[ 𝑟𝑥𝑖 (𝑊 )⋅𝑟𝑥′𝑖

(𝑊 )

(𝜔(𝑊 ))2

]

, which can be
written as follows:

E

[

𝑟𝑥𝑖 (𝑊 ) ⋅ 𝑟𝑥′𝑖 (𝑊 )

𝜔(𝑊 )2

]

=
∑

𝑊 ∈×[𝑔]

(

𝑟𝑥𝑖 (𝑊 ) ⋅ 𝑟𝑥′𝑖 (𝑊 )

𝜔(𝑊 )2

)

× 𝜔(𝑊 )

=
𝑔(1 − 𝑝𝑑)(𝑔 + 𝑔 𝑝𝑑 − 2𝑑)

(𝑔 − 𝑑)2
(9)

By taking Eqs. (8) and (9) into Eq. (7), we can derive the upper

ound of E
(

𝐿
𝑥𝑖 ,𝑥′𝑖
𝜖𝑠

)2
based on E

[

( 𝑟𝑥𝑖 (𝑊 )
𝜔(𝑊 )

)2]

and E
[ 𝑟𝑥𝑖 (𝑊 )⋅𝑟𝑥′𝑖

(𝑊 )

𝜔(𝑊 )2

]

. □

Taking the values provided by Theorem 1 into Lemma 1, we can
derive the upper bound of the hockey-stick divergence of order 𝑒𝜖𝑠
between MHM(𝐷) and MHM(𝐷′). Following that, based on Lemma 2
which illustrates the relationship between the divergence and differen-
ial privacy, by making the upper bound smaller than 𝛿𝑠, we can derive
he amplified privacy measured by 𝜖𝑠, which is expressed by 𝜖𝑙 and
𝛿𝑠. And on the other hand, the privacy budget 𝜖𝑙 involved in the local
randomizer can be written by 𝜖𝑠 and 𝛿𝑠. Then given the requirement of
privacy protection for the output of shuffler, (𝜖𝑠, 𝛿𝑠), we can compute
the reasonable noise scale (associated with 𝜖𝑙) added by the underlying
LDP component.

5. Shuffler-assisted personalized differential privacy

In practice, when the dataset comprises multiple users with differ-
ent privacy expectations, MHM customized for the a uniform privacy
protection cannot be directly applied. There are two intuitive methods
to utilize MHM as a component. One is to enforce all to follow the
most strictest privacy protection level (𝜖𝑚𝑖𝑛, 𝛿𝑚𝑖𝑛) among users and then
invoke MHM with such privacy budget, where (𝜖𝑚𝑖𝑛, 𝛿𝑚𝑖𝑛) denotes the
minimum privacy budget from all users. Obviously, in this way, the
users with weaker privacy protection requirement, i.e., with privacy
budget greater than (𝜖𝑚𝑖𝑛, 𝛿𝑚𝑖𝑛), waste some budgets, and hence result
in the loss of utility. The other way is to group the users with the same
privacy budget and then invoke MHM parameterized by their uniform
budget. Then multiple versions of estimation results from different
groups can be combined to derive a more accurate one with the weight
average technique (Li et al., 2012). Although this method can avoid
the budget waste effectively, multiple invocations of MHM on disjoint
sers lead to fewer users involving in shuffling. That significantly limits
rivacy amplification since fewer outputs from local randomizer are
sed to hide the output of some user. The utility of final results is
hereby poor.

To overcome the shortcomings of the above two intuitive methods,
we propose the overlapping group mechanism, which organizes the MHM
invocation with the goal of maximizing the group size, in order to
enhance the privacy amplification, while simultaneously making full
use of the privacy budgets of all users to eliminate the budget waste.
The enhanced privacy amplification of course will improve the utility
of published data.

Overlapping group mechanism (OGM). Instead of partitioning users
into disjoint groups, the significant advantage of OGM is to form over-
lapped groups and hence increase group size on average. To achieve
this goal, it partitions privacy budgets into splits and then accordingly
groups users. Alg. 3 presents the high-level overview of OGM which
works as a dispatcher of scheduling MHM invocations. By taking users’
ensitive data and privacy budget specifications as the initial input,
GM chooses the minimum privacy budget (𝑥0, 𝑦0) as the first split from
sers in the set  . Note that  contains all users at the beginning. For
he select budget split, OGM invokes MHM to collect data from users
n  under (𝑥0, 𝑦0)-DP. Then we can derive a version of frequency dis-

tribution estimation 𝐹 𝑠∗ associated with the amplified privacy budget
∗
(used in local randomizer) 𝜖𝑙. Later, (𝐹 𝑠 , 𝜖𝑙) will be used as input of
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Algorithm 3: Overlapping group mechanism
Input : A set of 𝑛 users with privacy budget specifications

{(𝜖𝑖, 𝛿𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑛}.
Output: An unbiased estimator 𝐹 ∗ of the true frequency

estimation on 𝑑-dimensional categorical data.
1 Let  be the set of all users;
2 𝑣 ← 0, Fset={};
3 while  ≠ ∅ do
4 Choose the minimum privacy budget (𝑥0, 𝑦0) among users in

 ;
5 //invoke MHM to collect data from users in  with budget

(𝑥𝑖, 𝑦𝑖);
6 (𝐹 𝑠∗, 𝜖𝑙) ← MHM((𝑥𝑖, 𝑦𝑖),  );
7 Fset = Fset ∪{(𝐹 𝑠∗, 𝜖𝑙)};
8 for each user 𝑢𝑖 ∈  do
9 𝜖𝑖 = 𝜖𝑖 − 𝑥0, 𝛿𝑖 = 𝛿𝑖 − 𝑦0;
10 if 𝜖𝑖 = 0 then
11 Remove 𝑢𝑖 from  ;

12 𝑣 ← 𝑣 + 1;

13 Derive the frequency distribution estimation 𝐹 ∗ based on Fset
with weight average technique;

14 return 𝐹 ∗;

the weight average technique (Li et al., 2012) to derive a more accurate
version of published results. Note that in the process above, each user
𝑢𝑖 has already consumed budget (𝑥0, 𝑦0) to guarantee (𝑥0, 𝑦0)-DP. Based
on the sequential composition property (McSherry, 2009) of DP, in the
ollowing, only (𝜖𝑖 − 𝑥0, 𝛿𝑖 − 𝑦0) budget is remained for 𝑢𝑖, as shown

in Line 9. Once the updated 𝜖𝑖 is equal to 0, we know the budget of
𝑢𝑖 is used up and we cannot collect data from her any more. These
sers are thereby removed from  , as shown in Line 11. Then OGM
ontinuously selects the minimum budget (𝑥1, 𝑦1) as the second split for
emained users in  , and invokes MHM again to get another version.
uch procedures are repeated multiple rounds, until the budgets of all
sers are used up.

Obviously, a user in  can contributes values in multiple rounds of
MHM invocations associated with different budget splits. MHM thereby
can collect values from users as many as possible, in order to enhance
the privacy amplification. At last, in Line 13 of Algorithm 3, OGM com-
bines the multiple versions of frequency distribution estimations into a
single one using the existing weight average technique (Li et al., 2012).

he latter has the greatest accuracy and is regarded as the final result.
Fig. 2 shows an example for better understanding OGM. In par-

ticular, the user set consists of four users 𝑢1, 𝑢2, 𝑢3 and 𝑢4, each of
which is with privacy budget specification 𝐵𝑖 = (𝜖𝑖, 𝛿𝑖), where 𝐵1 <
𝐵2 = 𝐵3 < 𝐵4. Here we define 𝐵𝑖 < 𝐵𝑗 when 𝜖𝑖 < 𝜖𝑗 and 𝛿𝑖 < 𝛿𝑗 ,
𝐵𝑖 = 𝐵𝑗 when 𝜖𝑖 = 𝜖𝑗 and 𝛿𝑖 = 𝛿𝑗 . In the first round, the strictest
privacy protection level, i.e., the minimum privacy budget split (𝜖𝑝1, 𝛿𝑝1)
(equaling to 𝐵1), is chosen as the privacy guarantee for MHM. Now data
are collected from all users 𝑢1-𝑢4. In this way, OGM provides excessive
privacy protection for 𝑢2-𝑢4. In the remaining rounds, there exist extra
chances for OGM to collect data from them again, to further optimize
the frequency distribution estimation. The remaining budgets for 𝑢2, 𝑢3
and 𝑢4 are then decreased as (𝜖𝑝2, 𝛿𝑝2), (𝜖𝑝2, 𝛿𝑝2) and (𝜖𝑝2 + 𝜖𝑝3, 𝛿𝑝3 + 𝛿𝑝3)
respectively, where 𝜖𝑝2 = 𝜖2 − 𝜖1, 𝛿𝑝2 = 𝛿2 − 𝛿1, 𝜖𝑝2 + 𝜖𝑝3 = 𝜖4 − 𝜖1
and 𝛿𝑝2 + 𝛿𝑝3 = 𝛿4 − 𝛿1. Then the currently minimum budget (𝜖𝑝2, 𝛿𝑝2),
as another split, is used for MHM to collect data from {𝑢2, 𝑢3, 𝑢4} in
the second round. Similarly, following that, OGM invokes MHM with
budget (𝜖𝑝3, 𝛿𝑝3) to collect data from 𝑢4. At last, OGM does weight
average on these three versions to derive the final result.

6. Experiments

In this section, we evaluate our proposals MHM in Section 4 and
OGM in Section 5 with the uniform and personalized privacy budget
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Fig. 2. An example to illustrate the overlapping group mechanism.

specifications respectively. All experiments were performed on an AMD
Ryzen 3.6 GHz CPU with 16 GBytes of memory.

Competitors. We compare our proposals with the following protocols.

• Uniform privacy budget specifications: mainly including two
state-of-the-art techniques for collecting multidimensional cate-
gorical data under SDP, FLAME (Liu et al., 2021) and TCM (Wang
et al., 2021a). They are sample-based and transform-based meth-
ods, which give the bound of privacy amplification from shuffling
based on the traditional DP definition (Balle et al., 2019). Please
refer to Section 3.3 for details.

• Personalized privacy budget specifications: using the technique
termed as non-overlapping group mechanism (NOGM) as the
competitor. Since no existing solution can directly support this
task, we take the following best-effort approach as the baseline.
In particular, we firstly group the users by the budget specifica-
tions. Following that, MHM is invoked for each group of users
with the same budget. Then weight average technique is used to
combine different versions of frequency distribution estimations
from different groups. Compared with our proposal OGM, this
method considers the information of budgets firstly and splits
users into non-overlapping groups based on budgets. So we term
it as non-overlapping group mechanism.

Datasets. We use two public datasets extracted from the Integrated
Public Use Microdata Series,1 BR and MX. Both contain 100 000 census
records but respectively from Brazil (with 10 attributes) and Mexico
(with 14 attributes). Besides, to validate the effectiveness of MHM on
the task for multidimensional range queries, we use extra two real
datasets Adult,2 and Loan3 whose attributes are all with ordinal values.
They have 30 thousands records with 5 attributes and 200 thousands
records with 10 attributes respectively.

Utility Metric. We report result utility on three tasks under SDP
including the classical frequency estimation, the 𝑘-way marginal query

1 https://international.ipums.org.
2 http://archive.ics.uci.edu/ml.
3 https://www.kaggle.com/datasets/wordsforthewise/lending-club.
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Fig. 3. Result accuracy for frequency estimation with real datasets.

as well as the range query, in terms of mean square error (MSE). The
first is the focus of this paper. And the latter two are important research
branches in DP and LDP, which have been investigated in a large
number of works shown in Section 2. Usually, they adopt frequency
distribution estimation as a module involved in their frameworks,
where our proposal MHM can be utilized to optimize this module. So
we also evaluate the performance of MHM on these two tasks. For

the frequency distribution task, MSE is defined as 1
𝑑
∑𝑑

𝑖=1

∑
|𝐶𝑖 |
𝑗=1 (𝐹

∗
𝑖𝑗−𝐹𝑖𝑗 )

2

|𝐶𝑖|
,

where 𝐹 ∗
𝑖𝑗 (𝐹𝑖𝑗) denotes the noisy (actual) frequency of the value 𝑗 in the

𝑖th attribute. Similarly, in the 𝑘-way marginal query task, it is defined

as 1
𝐶𝑘
𝑑

∑𝐶𝑘
𝑑

𝑖=1

∑
|𝐷𝑖 |
𝑗=1 (𝐹

∗
𝑖𝑗−𝐹𝑖𝑗 )

2

|𝐷𝑖|
, where 𝐹 ∗

𝑖𝑗 (𝐹𝑖𝑗) denotes the noisy (actual)
frequency of the 𝑗th cell in the 𝑖th 𝑘-way marginal, and 𝐷𝑖 denotes
the domain of the 𝑖th 𝑘-way marginal. As for the range query, given a
query set 𝑄, MSE is defined as

∑

|𝑄|

𝑖=1(𝐹
∗
𝑖 −𝐹𝑖)

2

|𝑄|

, where 𝐹 ∗
𝑖 (𝐹𝑖) denotes the

noisy (actual) result of query 𝑄𝑖. A smaller MSE indicates that the noisy
results returned by a technique are closer to the groundtruth. Besides,
we also evaluate the efficiency of our proposals, in terms of the running
time and communication cost.

6.1. Evaluation results for uniform privacy budget specifications

In this set of experiments, we evaluate the performance of our
proposals MHM against FLAME and TCM on three analysis tasks,
including the classical frequency estimation, 𝑘-way marginal queries
and the multidimensional range queries.

6.1.1. Performance on frequency estimation
Fig. 3 plots the MSE results on frequency estimation with SDP as a

function of the privacy budget 𝜖 with 𝛿 = 1
𝑛 . Overall, MHM consistently

and significantly outperforms the state-of-the-art technique FLAME.
When 𝜖 = 1 on MX, our methods improve the MSE by about 0.5 times
(on BR) or 1 times (on MX) compared with FLAME. Besides, we also
observe that the gap between MHM and FLAME is proportional to 𝜖.
Also, MHM considerably outperforms TCM.

Discussion. The main reason for MHM beating FLAME is that the
shuffler in FLAME adds a large number of dummy values, so that it can
use the existing conclusion of privacy amplification based on bounded-
size database. However, the added dummy values import extra errors.
As for the gap between MHM and FLAME proportional to 𝜖, it is
because in FLAME, the error in the final estimation is brought by
three operations, including adding dummy values, sampling and locally
randomizing. By contrast, MHM just contains the latter one. On the
other hand, the errors from the first two are independent of 𝜖, while
the latter is inversely proportional to 𝜖. Together, when 𝜖 increases, the
ratio of error brought by dummy values and sampling also increases,
which leads to the gap between FLAME and MHM increased. Besides,
the main reason for the superior performance of MHM to TCM is that
the former takes a thorough analysis on her perturbation function, and
fully utilizes the relationship between the divergence and differential

privacy to explore the privacy amplification. Accordingly, they derive

https://international.ipums.org
http://archive.ics.uci.edu/ml
https://www.kaggle.com/datasets/wordsforthewise/lending-club


N. Wang et al.

(

s
e
t
v
s
o
p
t
M
t
l
t
c
s

Computers & Security 151 (2025) 104301 
Table 3
Comparisons of different methods on the metrics including true positive (TP for short), false positive (FP for short), true negative (TN for short) and false negative
FN for short).
Metrics TP FP TN FN

Methods FLAME TCM MHM FLAME TCM MHM FLAME TCM MHM FLAME TCM MHM

𝜖 = 0.1 40 31 37 10 19 13 32 23 29 10 19 13
𝜖 = 0.2 39 37 42 11 13 8 31 29 34 11 13 8
𝜖 = 0.4 41 39 38 9 11 12 33 31 30 9 11 12
𝜖 = 0.8 41 38 41 9 12 9 33 30 33 9 12 9
𝜖 = 1.0 39 41 41 11 9 9 31 33 33 11 9 9
c

s

a

M
d
f

o

g

Fig. 4. Running time for frequency estimation with real datasets.

Fig. 5. Communication cost between one user and the shuffler for frequency estimation
with real datasets.

much better bound of shuffling benefits, which leads to more accurate
results.

Fig. 4 shows the running time of our proposals as well as the
competitors on the user side. Note that the sampling-based FLAME sig-
nificantly outperforms all the other methods, with a clear performance
gap. We next investigate communication costs on the user side in Fig. 5,
which measures the messages received and sent by the user. Observe
that FLAME and MHM yield much lower communication costs than
TCM. And FLAME outperforms MHM.

Discussion. The superior performance of FLAME on running time is
that FLAME just perturbs the value from the single sampled dimension,
while MHM needs to hash the value from each dimension. Process-
ing values from fewer dimensions clearly leads to runtime reduction.
Although FLAME shows the remarkable runtime superiority in our
imulated experiments, it is not clear how to deploy its extra ability-
mpowered shuffler in real applications. In other words, there is doubt
hat it is reasonable to make the shuffler be able to count or add dummy
alues. Even though it can be reasonably implemented, empowering the
huffler more abilities might incur possibly potential attacks. Overall, in
ur opinion, the traditional SDP-based method TCM and MHM are still
referred solutions where the latter runs faster because of the elimina-
ion of encoding operations. Besides, the main reason for FLAME and
HM beating TCM on the communication cost metric is that for TCM,

he curator needs to broadcast encoding rules to all users so that the
atter can consistently encode values into distinct items, even though
hese values from different dimensions have the same expression. That
learly generates expensive communication costs. In our evaluation, we

uppose that the domain of each attribute is not available on the user

10 
side and the encoding rule is to sequentially number domain values
from 1 to ∑𝑑

𝑖=1 |𝐶𝑖|. To make all users encode their own multidimen-
sional data consistently, the curator sends the encoding rules to users.
Then TCM at least incurs additional ∑𝑑

𝑖=1

(

|𝐶𝑖| ⋅ (8 + log(∑𝑑
𝑖=1 |𝐶𝑖|))

)

ommunication costs compared with MHM. Here we assume that each
value from different dimension domains can be expressed by a char. In
particular, FLAME outperforms MHM, because the latter uses log(𝑛) bits
to transmit the hash function information, instead of log(𝑑) bits for the
ampled dimension in the former.

Besides, we also show the performance of our proposal and the
competitors on the metrics including true positive, false positive, true
negative and false negative. Table 3 reports these metrics on the task
of publishing top-50 frequent attribute values. It is observed that MHM
performs similarly with FLAME, but is superior to TCM. Generally, a
higher result accuracy on frequency distribution estimation leads to
better performance on the above metrics computed on top-50 frequent
ttribute values. That is validated by the superiority of MHM to TCM.

However, if the gap of result accuracy is smaller, the result accuracy
cannot dominate the performance of publishing top-k frequent attribute
values task, especially when the 𝑘th maximal frequency is much larger
than the (𝑘 + 1)th maximal frequency. As a result of that, although

HM performs better than FLAME on the result accuracy of frequency
istribution estimation, they have a similar performance on the top-𝑘
requent attribute value task.

6.1.2. Performance on 𝑘-way marginal queries
In this section, we study the performance of all solutions on 𝑘-

way marginal queries. Note that Calm (Zhang et al., 2018), as one
of the state-of-the-art related LDP-based techniques, publishes results
n some views, each of which consists of carefully chosen attributes.

Accordingly, any marginal query can be derived using the Maximum
Entropy principle. Due to the effectiveness of Calm, we plug MHM into
the its framework to do the task under SDP. Observe that in Clam, it
is privacy-sensitive to only derive the frequency estimations on views.
To make a comparison between MHM and the competitors, we keep
its framework unchanged and just replace the frequency estimations
component by MHM or competitors. In particular, each view, i.e. some
attributes combination {𝑆1,… , 𝑆𝑖}, is regarded as one dimension asso-
ciated with ∏𝑖

𝑗=1 |𝐶𝑆𝑗
| values, where 𝑆𝑗 and 𝐶𝑆𝑗

respectively indicate
an attribute and its domain. In this way, the frequency distribution
estimations on multiple views can be transformed into the ones on
multiple dimensions, which is consistent with the problem that our
paper focuses on.

Fig. 6 shows the MSE results on frequency estimation of the cho-
sen views when answering 10 random 3-way marginals. Note that
when testing 𝑘-way marginal queries and range queries, only MHM
and FLAME are plotted, and TCM is left out, because the significant
accuracy improvement of the former two have been validated in Fig. 3.
From Fig. 6, we observe that the MSEs are also inversely proportional
to budgets and MHM has a superior to FLAME, which agrees with
the phenomenon shown in Section 6.1.1. Besides, Fig. 6 reveals the
ap between MHM and FLAME for views is much larger than that for

multiple dimensions in Fig. 3. In some settings, the MSE of FLAME
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Fig. 6. Result accuracy of views for answering 3-way marginal queries with the
ramework of Calm.

Fig. 7. Result accuracy of 3-way marginal queries with the framework of Calm.

Fig. 8. Result accuracy of grids for answering range queries with the framework of
DG.

is about 100 times larger than that of MHM. Fig. 7 plots the MSE
esults on frequency estimations on 3-way marginal queries which are
nswered by the estimations on views. Undoubtedly, Fig. 7 shows the

same phenomenon as that in Fig. 6, except that the noise scale is bigger
han that for views.

Discussion. The main reason for the inferior performance of FLAME in
Figs. 6 and 7 is that the amplified privacy budget 𝜖𝑙 for this view pro-
ided by FLAME is equal to log

(

(𝑁𝑝−1)𝜖2𝑐 𝑘
14 log(2∕𝛿𝑐 𝑘) − 𝑘 + 1

)

, where 𝑘 denotes

he domain size. On the other hand, the domain size of a view is the
roduct of the ones of covering attributes (dimensions), which is much
igger and sometimes up to 4000 on these two datasets, leading to a
maller amplified budget for the view. Then, more noise is added by the

local randomizer and the result utility becomes poor. Besides, as for the
igger noise scale for 3-way marginal query than that for views, that is
ue to the fact that the result of 3-way marginal query is derived from
he frequency estimations on views by the Maximum Entropy principle
ith the framework of Calm. So the result utility on views dominates

he one on marginal queries. Besides, this Maximum Entropy principle
s an approximate way to derive the results of 𝑘-way marginal queries,
hich also imports error. That is why the noise scale in Fig. 7 is bigger.

6.1.3. Performance on multidimensional range queries
We finally evaluate the performance of our proposal when an-

wering multidimensional range queries. HDG (Yang et al., 2020) is
11 
Fig. 9. Result accuracy of 3-dimensional range queries with the framework of HDG.

the up-to-date LDP-compliant technique for multidimensional range
queries. Similar with Calm (Zhang et al., 2018) mentioned above, it
also derives the answers based on published frequency distribution
estimation on LDP-compliant sketches. Here, the sketch consists of both
one-dimensional and two-dimensional grids. In particular, given two
parameters 𝑔1 and 𝑔2, HDG uniformly partitions the one-dimensional
domains of each attribute into 𝑔1 grids and two-dimensional domains of
ll attribute pairs into 𝑔2 grids. And then it invokes the LDP component
o collect data from users to derive the frequency of each grid. Like
alm, HDG is also privacy-sensitive. We then invoke FLAME or MHM
o replace its LDP component, in order to make HDG work under SDP.
pecifically, we regard a one-dimensional grid as an attribute with 𝑔1
alues and two-dimensional grid as an attribute with 𝑔2 values. Now
he problem of frequency estimations on grids is transformed into the
ne on multidimensional data.

Figs. 8 and 9 presents the MSE results on frequency estimations
on 𝑑 + 𝐶2

𝑑 grids as well as 10 random 3-dimensional range queries
respectively. MHM consistently outperforms FLAME. The MSE results
are both inversely proportional to 𝜖s and the reason has been discussed
in Section 6.1.1. We omit it for brevity. Another interesting observation
s that the MSEs of multidimensional range queries are sometimes

smaller than those on grids, which is different from the phenomenon
shown in Section 6.1.2. That is because HDG uses frequency estimations
on each attribute pair, rather than the ones on grids, to answer range
queries. The former is derived by postprocessing the estimations on
grids, in which to some extent the operation can be regarded as
doing consistency among the frequency estimations on grids. As we
all know, consistency-enforced estimation has a positive effect on the
result utility.

6.2. Evaluation results for personalized privacy budget specifications

Finally, we verify the effectiveness of OGM. To simulate the non-
niform privacy specifications, we manually divide users into three
roups in a random manner: conservative users with a low privacy
udget (𝜖𝑐 , 𝛿𝑐 ) as (0.1, 1

10𝑛 ); moderate users with a medium privacy
budget (𝜖𝑚, 𝛿𝑚) as (0.5, 1𝑛 ); and liberal users with a high privacy budget
𝜖𝑙 , 𝛿𝑙) as (1, 10𝑛 ).

Fig. 10 plots the MSE as a function of the ratio for the num-
ers of conservative, moderate and liberal users. Overall, our proposal
GM consistently and significantly outperforms the best-effort ap-
roach NOGM. Notably, when the ratio is 2:4:4 on the MX dataset, the
SE of NOGM is one times larger than the one of OGM. Moreover,

t is observed that with the increasing of the number of moderate or
iberal users, both two methods perform better. That agrees with the
act that an average lower privacy concern means less noise, and then
an generate higher utility results.

Discussion. The main reason for OGM’s superior performance is that in
MHM the scale of privacy amplification is proportional to the number
of users’ outputs involved in the shuffling operation, since more par-
ticipants can hide one of them more easily. OGM adequately utilizes
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Fig. 10. Result accuracy for frequency estimations under personalized privacy budget specifications with real datasets.
the knowledge and always attempts to maximize the number of users
nvolved in each invocation of MHM. Consequently, OGM usually has
 bigger amplified privacy budget, leading to less noise added by the
ocal randomizer. That contributes to improving the result utility of
requency estimations.

7. Conclusion

This work investigates the problem of collecting multidimensional
categorical users’ personal data under the SDP model. We propose
Multiple Hash Mechanism to deal with this problem, as well as a thor-
ough shuffling benefit analysis method for this mechanism. Extensive
experiments demonstrate the effectiveness of our proposals. In the next
step, we plan to extend our proposals to publish mean estimations
n the multidimensional numerical data, which can be applied for

publishing the gradients involved in training the machine learning
model.
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