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Abstract. The K-Means algorithm has effectively promoted the devel-
opment of intelligent systems and data-driven decision-making through
data clustering and analysis. A reasonable convergence judgment directly
determines when the model training can be terminated, which heavily
affects the model quality. There are many researches for training accelera-
tion and quality improvement, but few focus on the judgment. Currently,
the convergence criteria still adopt a centralized judgment strategy for
a single loss value. The criterion is simply copied between different opti-
mized K-Means variants, typically like the fast Mini-Batch version and
the traditional Full-Batch version. Our analysis reveals that such a design
cannot guarantee that different variants converge to the same point, that
is, it can result in abnormal situations such as false-positive and over-
training. To perform a fair comparison and guarantee the model accuracy,
we proposed a new dynamic convergence criterion VF (Vote for Freezing)
and optimized version VF+. VF adopts a distributed judgment strategy
where each sample can decide whether to participate in training based on
the criterion (i.e., freezing itself) or not. Meanwhile, combined with the
priority of samples, VF adaptively adjusts the sample freezing threshold
which achieves asymptotic withdrawal of samples and accelerates model
convergence. VF+ further introduced parameter freezing thresholds and
freezing periods to eliminate redundant distance calculations, hence it
improves the training efficiency. Experiments on multiple datasets val-
idate the effectiveness of our convergence criterion in terms of training
quality and efficiency.
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1 Introduction

As the most widely used clustering algorithm [1,4], the K-Means algorithm
has been extensively explored. Several methods have been proposed to enhance
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clustering quality [9]. Besides, given the K-Means algorithm’s high dependency
on centroid initialization, optimizing the initial centroid is a good strategy to
improve the model convergence speed [18]. The Canopy algorithm proposed by
McCallum et al. [8] improved distance calculation and Pérez et al. [10] enhanced
classification. Parallel computing and distributed algorithms [7,14] improved the
efficiency of processing large-scale data.

The above optimization methods are all applied to two basic training poli-
cies: Full-Batch and Mini-Batch. Compared with Full-Batch, where centroids are
updated after all samples are scanned, Mini-batch can perform frequent updates
when partial samples are processed. Mini-Batch speeds up convergence because
fresh information learned from previously processed samples can be quickly used
to process subsequent samples. Nowadays, Mini-Batch has become a popular
choice for model training.

The training process iteratively adjusts parameters until convergence. There
are multiple convergence criteria including reaching a pre-set number of itera-
tions, minimizing loss below a threshold, or finding the loss difference between
two consecutive iterations below a given threshold. The thresholds of the first
two criteria are difficult to set, and it is difficult to ensure model quality. The
most commonly used convergence criterion is the last one.

Currently, when running the Mini-Batch training, researchers usually directly
use the loss difference threshold in Full-Batch. However, such a design can lead
to unfair comparisons. Under Mini-Batch, the accumulated change of the loss
function per iteration is smaller than that in Full-Batch because the former only
processes partial samples instead of all. Then, the difference threshold used in
Full-Batch can be easily satisfied under Mini-Batch. This false-positive judgment
will terminate training abnormally. A possible solution is normally updating
the centroid after each Batch but only judging convergence after completing an
Epoch (resembling Full-Batch). However, such a delayed judgment detection may
result in redundant training, because the frequent update will largely change the
centroids during an epoch. The loss difference between two epochs can be overly
large, making it difficult to satisfy the threshold (but actually the absolute loss
value has been significantly smaller than that achieved in Full-Batch).

We use two real-world datasets HIGGS and HepMASS to validate the false-
positive and over-training phenomena on K-Means. Figure 1 shows the phe-
nomenon of false-positive convergence. Table 1 shows the phenomenon where
over-training generates 13.2% and 17.9% runtime degradation.

In order to solve the above problems, we introduce a new threshold-setting
policy based on the “Vote-to-Halt” [6] mechanism and study a new convergence
algorithm VF. The reason for the two phenomena is that the convergence judg-
ment always resorts to the accumulated loss value. Such a centralized policy is
very sensitive to the number of samples involved in the computation. Our solu-
tion is designing a decentralized policy where each sample can individually decide
whether to participate in training (i.e., it can vote to halt if it’s unnecessary to
be continuously processed) or not.
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Recently, researchers also noted that some non-critical samples do not need
to participate in training models. The SlimML [5] framework eliminates non-
critical data during iterations. It selects a small number of representative aggre-
gated data samples based on a priority threshold for training. However, its pri-
oritization method can’t be directly applied to K-Means due to the absence of
gradient computation. Besides, The threshold for excluding non-critical data is
set manually, and each sample shares the same constant threshold. We change
the prioritization method for K-Means and give a dynamic threshold.

(a) HIGGS (b) HepMASS

Fig. 1. Evaluation of false-positive. The blue dashed line represents the final loss value
of the Mini-Batch when the Full-Batch threshold is directly used. (Color figure online)

Table 1. Evaluation of over-training. Truncated Time is the time when the Mini-Batch
loss descends to match the Full-Batch for the first time. Complete Time is the final
training time of the Mini-Batch.

Datasets Full-Batch
Loss(107)

Mini-Batch
Loss(107)

Truncated
Time(sec)

Complete
Time(sec)

HepMASS 3.0429643 3.0426370 39.272 45.236
HIGGS 4.0886614 4.0883565 43 52.364

In addition to sample-level freezing, we are aware that some work also focuses
on parameters, i.e., Adaptive Parameter Freezing (APF) [3], which avoids high
communication costs in distributed environments by freezing stable parameters.
The freezing period is adjusted using the TCP approach based on the stability
of unfrozen parameters. We also borrow its idea to accelerate K-Means but the
frozen threshold and loss effective variation requires careful design.

Inspired by “Vote-to-Halt” and APF, we propose new convergence criteria
VF and VF+. Our main contributions can be summarized as follows:
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– We propose a novel convergence criterion (VF) based on a distributed loss
metric. This criterion replaces the commonly used centralized loss metric to
eliminate avoid the unfairness caused by directly transferring loss thresholds
from Full-batch to Mini-Batch.

– We propose a priority-based adaptive sample freezing strategy. We develop
a simple but efficient prioritization strategy based on the contribution of
each data sample to convergence. To boost model convergence efficiency, we
gradually withdraw samples by dynamically adjusting the freezing threshold.

– An adaptive parameter freezing strategy for K-Means (VF+) is proposed.
This strategy dynamically adjusts parameter freezing thresholds and freez-
ing periods based on the characteristics of each parameter. By minimizing
redundant sample-centroid distance calculations, we reduce model training
time.

2 Method

In this section, we will provide a detailed explanation of our proposed new con-
vergence criteria, VF and VF+.

A detailed introduction to VF will be given in Sect. 2.1. VF is a decentral-
ized convergence criterion which samples with low priority are withdrawn from
training by voting. Section 2.2 will provide a detailed introduction to VF+. VF+
builds upon VF, adding a parameter freezing module.

2.1 VF: “Vote-to-Halt” for Samples

VF is a sample voting freeze algorithm that combines the “Vote-to-Halt” with
the freeze threshold for samples.

A. Vote-to-Halt. There are several graph processing systems [11–13,15] and
Vote-to-Halt is a part of the Pregel. In Pregel, each vertex has a binary identifier
vote which identifies its two states: active and inactive (i.e., participating in
computation or not). After all vertices vote their status as inactive, the graph
algorithm terminates (converges). We treat samples in K-Means as vertices in
the graph. In each iteration, these samples independently decide whether to join
the current training or not. This approach differs from the traditional method
where samples either fully participate or abstain from the computation.

VF sets a state, voten, to sample Xn. Xn also has two states: active and
inactive, changing dynamically during model training. Initially, all of the samples
are active and participate in iteration calculations. Every sample is assigned a
freezing threshold based on the Full-Batch threshold. If the point’s loss-difference
between two consecutive iterations falls below this threshold, the point will make
little contribution to the model and the state of the sample will switch to inactive.

VF localizes the “Vote-to-Halt” technique specifically for K-Means. On the
one hand, VF does not adopt the mechanism of active messages. These messages



A Dynamic Convergence Criterion for Fast K-means Computations 195

Fig. 2. Overall framework of “Vote-to-Halt” applied to K-Means

are only sent when the distance of the sample to the centroid changes signifi-
cantly. Monitoring this requires checking the distance of each sample to the cen-
troid at each iteration, regardless of convergence. Even though this approach
may enhance convergence quality, it brings substantial computational costs.
Experimental evaluation reveals that using messages only results in a quality
improvement of 0.04% to 0.09%, with a time loss ranging from 11% to 64%.

On the other hand, we think the model converged when 1% of the samples
have voted rather than all. Initially, with significant centroid variations, only
a few samples vote, but the loss function fluctuates greatly. As the training
progresses, centroids stabilize, leading to decreased distances between samples
and centroids, thereby lowering the likelihood of cluster changes. After the loss
function is stable, continuing to require all samples to converge will not greatly
improve the accuracy of the model, so redundant training should be stopped in
time. The voting framework of VF is illustrated in Fig. 2.

B. Freezing Threshold of Sample. The freezing threshold of sample is a cru-
cial parameter. Next, we will provide a detailed explanation of how to determine
the threshold. Simply, we can evenly distribute the Full-Batch threshold θ to all
samples. However, using this threshold might not fully leverage the individual
characteristics of each sample. Some samples might not exit at the right time,
leading to inefficient resource usage and low training accuracy. Therefore, we
introduce sample priorities to adjust the thresholds.

The distance from the sample to its centroid C1 is d1. The next closest
centroid is C2, and the distance is d2. In most of time, sample change its centroid
from C1 to C2. If the difference between d1 and d2 is not much large, it means
that the sample is very easy to change cluster. These samples are labeled as high-
priority due to their potential to impact model parameters. Others are labeled



196 H. Yu et al.

as low-priority. As shown in Fig. 3(a), x1 is a high-priority sample while x2 is a
low-priority sample.

Fig. 3. Illustration of priority.

To classify the samples, the key is to observe R, the ratio of d2 to d1. If R is
less than the threshold α, it means that the gap between d1 and d2 is large and it
is stable. Whether the α is reasonable or not directly determines the effectiveness
of the method. The changes in the centroid gradually become stable, so α also
should be reduced. The threshold of the jth iteration we designed is the mean
of all sample ratios R in the previous epoch. N is the number of samples in the
dataset:

αj =
1
N

N∑

n=1

Rj−1
n (1)

The freezing threshold assignment strategy should satisfy two conditions.
First, samples with higher priority have lower freezing thresholds, which makes
high-priority samples participate in more training. Second, the sum of sample
thresholds must equal the Full-Batch threshold. The freezing thresholds should
not be increased or decreased blindly. Otherwise, it will lead to underfitting and
overfitting. We define the freezing threshold for low-priority samples as θ1 and
for high-priority samples as θ2. To satisfy the above conditions, the constraints
given by the thresholds are as follows:

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

θ1ϕ1N + θ2ϕ2N = θ
θ1 > θ2

θ1, θ2 > 0
ϕ1 + ϕ2 = 1

(2)

Here, ϕ1 represents the proportion of low-priority samples, and ϕ2 represents
the high-priority. θ is the Full-Batch threshold. According to Fig. 3(b), l1 is the
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second expression in Eq. 2. l2 is the first expression in Eq. 2. It is easy to see that
the orange line satisfies the condition, thus we have:

⎧
⎪⎨

⎪⎩

θ1 =
θ

N
(1 − k +

k

α1
)

θ2 = (1 − k)
θ

N

(3)

k is used to control the difference between θ1 and θ2. Generally, we set k=0.5.

2.2 VF+: Freezing for Parameters

Inspired by APF, a parameter freezing module is added to VF to further improve
the training efficiency, forming the VF+ algorithm which is shown in Fig. 4.

Fig. 4. Overview of VF+. Using four centroids as an example: After centroids are
frozen, they can unfreeze during training, whereas samples, once frozen, will no longer
be involved in calculations

In K-Means, the parameters of the model are the centroids. When the cen-
troid undergoes slight changes, distances between samples and their centroids
will not change greatly. We greedily think that few other centroids will undergo
significant changes, which means the probability of centroid change is extremely
low. Hence, it is of little significance to calculate sample points in clusters with
smaller centroid changes. Especially, when large-scale datasets are applied to
K-Means, there could be tens or even millions of samples in a cluster, and each
iteration needs to calculate the distance of each sample point to all centroids.
Therefore, freezing certain centroids and their samples at appropriate times can



198 H. Yu et al.

significantly reduce redundant distance calculations. However, frozen parameters
must be unfrozen at the right time to maintain quality clustering. Although this
may cause a loss in convergence accuracy, experiments show that the time saved
outweighs this loss.

A. Frozen Threshold & Period. This section introduces how we apply some
methods in APF to K-Means. Similar to samples, centroid Ci gradually stabilizes
with iterations, requiring the freezing threshold εri to be dynamically adjusted.
Freezing all parameters makes the mechanism useless, yet leaving all unfrozen
would lack centroids for training. At first, we give an initial parameter freezing
threshold. If most parameters are frozen, we halve the threshold to reduce the
likelihood of all parameters being frozen. The freezing period also needs careful
consideration. Too short, it will risk redundant detection; too long, it will slow
convergence. Hence, we use TCP mode to adaptively adjust the freezing period.
The parameters are tracked after they are unfrozen. If a parameter is frozen
again, its threshold will be increased by 1. If they remain unfrozen, we greedily
halve the freezing period.

B. Loss Function’s Effective Variation. In APF, a parameter is a single
value, making it easier to calculate positive and negative directions for effective
perturbation. However, in K-Means, a parameter is a multi-dimensional vector,
making it challenging to compute positive and negative directions. If we are to
calculate the positive and negative directions of the centroids for each dimen-
sion independently, some centroid dimensions will be frozen, leading to biased
clustering. Hence, in K-Means, we focus on the Euclidean distance between cen-
troid positions to determine parameter variation. If the distance P r

n is less than
a threshold εri , the centroid is frozen.

P r
n = ‖Cr

n − Cr−1
n ‖2, (Xn ∈ Ci)

3 Experiments

In this section, we will present the experimental results of VF and VF+ on
three datasets. In Sect. 3.1, we will introduce the datasets and our baseline. In
Sect. 3.2, we will present a comparison between our methods and baselines to
demonstrate the effectiveness of our approaches. In Sect. 3.3, we will conduct
experiments to analyze the necessity of certain details in our method.

3.1 Experimental Setup

A. Datasets. The details of the three datasets we used are shown in Table 2.
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Table 2. Dataset Summary

Datasets Samples Size Dimensions

Covtype [2] 581012 54
HIGGS [16] 11000000 28
HepMASS [17] 7000000 27

B. Baseline. We compare the models in terms of both accuracy and training
time. In terms of model accuracy, our intention is to use SlimML as the baseline.
However, the freezing threshold for samples in SlimML is selected through many
experiments, and exact values for K-Means are not given. Therefore, we use two
extreme values θ/(k ∗ N), with k = 0.1 and k = 0.9 as the baseline. But users
typically need the Full-Batch training loss, so we add a Full-Batch baseline, just
in case. In terms of training time, we also use the two extreme values of SlimML
and an adding one as the baseline. However, directly applying the Full-Batch
threshold to Mini-Batch training will lead to unfairness. Therefore, it is not wise
to directly use the training time of these two ways as baselines. In Mini-Batch
training mode, we use the truncated time as the time baseline.

3.2 Overall Performance

Figure 5(a) shows the results of comparing the loss and runtime among VF, VF+,
and baselines. For these three datasets, the maximum difference between VF
and the three loss baseline is 0.97%, 0.05%, and 0.59%. The maximum difference
between VF+ and the three loss functions baseline is 1.26%, 0.06%, and 0.73%.
It can be seen that the loss value of our method and the three baselines can
be bounded. Figure 5(b) shows that our method achieves a significant time gain
compared to all three baseline methods on the HIGGS and HepMASS datasets.
Due to the different orders of magnitude, the difference in Covtype is not fully
reflected in Fig. 5(b). For VF, Covtype reduces the time by 18.61% over Full-
Batch and by 31.65% and 58.26% over SlimML. For VF+, the time of Covtype
is 30.55% shorter than Full-Batch, 41.68% and 64.38% shorter than SlimML.

3.3 Analysis of VF & VF+

A. Dynamic Sample Freezing Threshold. As iterations progress, centroids
stabilize, leading to stabilized distances from samples. Therefore, it is evidently
unreasonable to use a fixed sample freezing threshold and we have confirmed
this suspect through experiments. We set the fixed sample freezing threshold as
θ/(k ∗ N), where k is given as 0.1, 0.3, 0.5, 0.7, and 0.9. Model accuracy and
training time trend in opposite directions as k grows, and there is no satisfactory
threshold for model accuracy and training time.
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Fig. 5. Overall performance.

B. Partial Samples Converge. In Sect. 2.1, we have given a detailed explana-
tion for adopting partial samples convergence. Here we give specific experimental
validation. Figure 6 illustrates the running results on VF but lets all samples con-
verge across three datasets. The bar is the loss and the line is the frozen sample
count. We can see that in the early stage of training, only a few samples are
frozen, while the loss makes a huge change. In the later stages, although the
number of frozen samples increases, the change of loss is almost negligible. so
we truncate at 1% on the three datasets, and we get a loss function that differs
from the fully converged loss function by only 1.06%, 0.03%, and 0.60%. But we
get 60.72%, 71.94%, and 81.42% gains in time.

Fig. 6. Changing process of loss and frozen sample count with the entire dataset con-
verged

C. Parameter Frozen Threshold. Since K-Means has fewer parameters,
we’ve found through experiments that if the threshold is too large, all parameters
may be frozen and our halving strategy won’t have time to take effect. Conse-
quently, samples will idle until a parameter is unfrozen. This will significantly
weak the training efficiency. To find a better threshold, we gradually reduce
the freezing threshold of the parameters while ensuring that no idling occurs.
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We conduct experiments with 7 thresholds for each dataset, and the results are
shown in Fig. 7. The loss value of model training changes relatively little, so
we select the freezing thresholds with the shortest running time, which are 0.7,
0.0007, and 0.0014.

Fig. 7. Loss and training time with different freezing thresholds for parameters.

4 Conclusion

VF uses decentralized convergence and sample priority based on distance ratios
to address unfairness when applying the loss threshold of Full-Batch to Mini-
Batch. VF+ enhances efficiency with dynamically freezing parameter freezing.
Experiments show that VF and VF+ improved efficiency and ensured quality.
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