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Abstract—Local differential privacy (LDP) has been estab-
lished as a strong privacy standard for collecting sensitive
information from users. Although it has attracted much research
attention in recent years, the majority of existing works focus
on applying LDP to frequency distribution estimation for each
individual value in a discrete domain. This paper concerns the
important range queries involving multiple discrete values. Till
now, only a few works target this problem. They all rely on the B-
ary tree to construct a uniform and hierarchical decomposition,
so as to decrease the error when answering large range queries.
However, the uniform splitting manner ignores the properties
of decomposed sub-domains and processes them equally without
preferences, which leads to significant performance penalty.
In this paper, we tackle the problem head on: our proposal,

privNUD, is a novel domain hierarchical decomposition mech-
anism. It dynamically decomposes each domain with a tailored
granularity into some sub-domains, which sensitively considers
the potential chances to answer one range query. The issue
of granularity is carefully analyzed for better performance. It
also can smartly prune the sub-domains with small frequencies.
Besides, an adaptive user allocation technique is designed to
dynamically decide the scale of users that are involved in each
sub-domain’s frequency estimation. Extensive experiments using
real and synthetic datasets demonstrate that privNUD achieves
significantly higher result accuracy compared to the up-to-date
solutions.

Index Terms—local differential privacy, range query, hierar-
chical decomposition

I. INTRODUCTION

Local differential privacy (LDP) is a rigorous privacy pro-

tection standard for collecting sensitive data from individual

users. It has been adopted and widely deployed by many

well-known companies such as Google [1], Apple [2] and

Microsoft [3]. Specifically, LDP guarantees that no adversary,

including the aggregator itself, can possibly infer the exact

values of private information with high confidence, regardless

of the adversary’s background knowledge. This is done by

letting each user perturb her data record locally to satisfy

differential privacy [4], and send only the perturbed version of

the record to an aggregator. Then the latter performs computa-

tions on the collected noisy data to estimate statistical analysis

results on the original data. Undoubtedly, LDP provides a

§Co-first authors
∗Corresponding author

strong privacy assurance to users, as the true values never

leave local devices.

As a relatively new concept, most of existing LDP-related

works are devoted to applying LDP to the frequency distri-

bution estimation on the entire domain of a given attribute,

which answers the unit query with high accuracy. However,

more applications ranging from market analysis to quantitative

economics research involve the frequency estimation of a

certain range on a domain. That is, we care about the number

of users with several values covered by a range. This paper

thereby focuses on answering such range queries under LDP

with high result utility.

A straightforward way for this task is to aggregate the

noisy frequencies provided by the existing methods [5], [6],

which is originally designed for answering the unit bin queries.

However, the accumulated noise will lead to a useless result,

especially when the range is large. A natural method of

improving utility is to keep additional bins over sub-intervals

of the domain as auxiliary information. The benefit is that

the range query involving many unit bins can be answered

with a rightly small number of sub-intervals, which exactly

covers the query range. The criterion of choosing sub-intervals

is of course a key issue. Currently, most of the existing works

rely on the B-ary tree structure to choose sub-intervals, which

split the coarse-grained domain (corresponding to one parent

node) into B fine-grained sub-domains with uniform length

(corresponding to children nodes) iteratively. The root and leaf

nodes indicate the entire domain and unit values respectively,

and all sub-domains associated with the nodes except the root

are regarded as sub-intervals.

The problem with hierarchical tree-based methods is that

the uniform splitting manner leads to each sub-domain treated

with equal weight. However, even if without query workload

given beforehand, i.e., any range query generated from the

domain could be submitted with the same probability [7],

the decomposed sub-domains from different levels, even the

ones from the same level have quite different impact on

the result accuracy of range queries. For example, Fig. 1

shows a hierarchical decomposition provided by the 2-ary tree

on the attribute domain {0,1,...,63}. Queries answered by a

sub-domain are the ones with ranges covering it but not its
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Fig. 1. A hierarchical decomposition tree with a uniform decomposition
granularity

parent. So the sub-domains [0,7] and [8,15] located in the

same level can be involved in answering 8 queries and 3921

queries respectively, which implies [8,15] is more important.

Accordingly, a more fine-grained decomposition can be done

for this sub-domain with less noise added. Existing works

ignore this fact and treat each sub-domain without preference.

They then add the same scale of noise and hence output

low utility answers. Different from them, our goal is to

construct a non-uniform decomposition for these sub-domains

by considering their potential chances to answer one query,

instead of a uniform decomposition granularity for all sub-

domains.

However, the non-uniform decomposition setting poses

great challenges for finding a best hierarchical tree structure,

since now the number of all possible candidates can be large.

To crack this nut, this paper proposes privNUD, a novel

domain decomposition mechanism for auxiliary sub-domains

selection. It considers the potential chances of sub-domains to

answer one query, and hence obtains higher result accuracy

for range queries.

Specifically, most existing solutions adopt a pre-defined

granularity to iteratively decompose the domain. Different

from them, privNUD performs the decomposition using a

non-uniform and changeable granularity customized for each

sub-domain to be decomposed. Note that each sub-domain

owns different properties such as the length and the number

of possible queries involving it. As a result, the customized

granularity contributes to improving the result accuracy of

queries involving the sub-domain. Further, the granularity

setting is of course a key issue. We carefully analyze the

error source of the query answer obtained by privNUD, and

then simulate it as an optimization problem. By solving this

problem, privNUD can find the best granularity to provide

answers with the highest accuracy. Moreover, privNUD also

designs a pruning strategy tailored for the non-uniform decom-

position mechanism. The goal is to avoid constructing those

sub-domains whose frequency estimations are overwhelmed

by the injected noises. Besides, we are aware that the non-

uniform decomposition can generate a direct negative impact.

That is, the paths on the tree are with different lengths. The

1(8 − 0 + 1) × (63 − 15 + 1) − (0 − 0 + 1) × (63 − 15 + 1) = 392.

traditional way for data collection is not applicable, because it

groups users into disjoint parts and each part is involved in the

frequency estimations on the sub-domains from the same level.

privNUD thereby adopts an adaptive user allocation technique,

which decides the number of users allocated to one node based

on the associated domain adaptively. Last but not least, for

multidimensional range queries, we rely on different structures

adaptive to domain dimensionality to decompose the domain,

which achieves significant performance improvement.

Contributions. To summarize, this paper makes the following

contributions:

• We design a novel domain decomposition mechanism

privNUD for one-dimensional range query under LDP,

which decomposes the sub-domains with non-uniform

granularities. It includes a guideline for choosing the

decomposition granularity for each sub-domain as well

as a prune strategy tailored for the proposed mechanism

to remove the sub-domains with small frequencies.

• We design an adaptive user allocation technique, which

decides the number of users allocated to one node based

on the associated domain adaptively.

• We rely on different structures adaptive to domain di-

mensionality to decompose the domain, which achieves

significant performance improvement.

• We conduct extensive experiments on both real and

synthetic datasets to confirm the high utility of privNUD

in both 1-dimensional and multi-dimensional queries.

The results show that privNUD outperforms existing

approaches by around one order of magnitude.

Organization. The remainder of this paper is organized as

follows. Section II reviews existing studies about the problem

this paper focuses on. Section III presents preliminaries about

local differential privacy, problem definition and the existing

methods. Section IV gives the detailed design of privNUD.

Section V evaluates the usefulness of our proposals, and

Section VI finally concludes the paper.

II. RELATED WORK

This section reviews some related works in both centralized

differential privacy (CDP) with a trusted aggregator and local

differential privacy.

Range Query under DP. Some existing works pay attention to

answering range queries under traditional CDP. The hierarchi-

cal decomposition mechanism is originally proposed by Hay et

al. [8]. They boost the result accuracy by enforcing consistency

among the noisy frequencies along the tree. Following that,

several works are proposed based on the hierarchical trees.

Qardaji et al. [7] analyze the factors affecting range query

accuracy under a hierarchical structure, and propose a way

to decide the granularity of hierarchical decomposition, i.e.,

the fanout of the tree structure. Zhang et al. [9] propose a

perturbation mechanism which decides whether a sub-domain

on the tree should be split, without worrying about the privacy

budget consumption. Cormode et al. [10] complete the privacy
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space decomposition with quadtrees and kd-trees to answer

various ranges of queries. Besides, Xiao et al. [11] use the

Haar wavelet transform method to provide answers to range

queries. All the above methods focus on the setting without the

query workload given beforehand. Namely, they are devoted

to designing the mechanisms for answering all possible range

queries.

Other techniques for analyzing general query workloads

under ε-DP are also discussed. Li et al. [12] utilize the matrix-

based optimization mechanism to select some auxiliary sub-

intervals to improve the result accuracy. Instead of representing

query workloads as fully-materialized matrices in [12], M-

cKenna et al. [13] use a compact implicit matrix representation

of the queries, which can effectively find the better auxiliary

sub-intervals to answer the queries. Since the complexity

of these methods depends on the number of queries, it is

impractical to utilize them to deal with the query workloads

consisting of all possible queries.

Range Query under LDP. There are also a handful of works

on range queries under LDP. Cormode et al. [14] analyze

two range query mechanisms based on wavelet transform and

hierarchical structure. And experimentally demonstrate that the

wavelet transform has high query accuracy at high privacy

budgets and the hierarchy works well at low privacy budgets,

but they do not extend the model to multi-dimensional scenar-

ios. Following that, HIO [15], AHEAD [16], HDG [17] are

also proposed, which are described in detail in Section III-C.

All the above methods focus on answering all possible range

queries. But they do not consider the importance of different

sub-domains. Besides, McKenna et al. [18] propose a new

LDP mechanism that adapts to a given query workload, which

uses a projected gradient descent algorithm to find the optimal

mechanism. Similar to that in CDP, this method has difficulty

in dealing with all possible queries.

Marginal Release under LDP. Our work is also related to

the line of marginal release. Cormode et al. [19] implement

marginal release under LDP based on transformations. Ren et

al. [20] propose a multidimensional joint distribution algorithm

based on Expectation Maximization and lasso regression, but

could not guarantee the computational efficiency in high-

dimensional scenarios. Zhang et al. [21] design the CALM

mechanism, which firstly chooses some attribute combinations

as views, and then publishes the frequency distribution estima-

tions on these views. Following that, any marginal query can

be derived based on the auxiliary information. Liu et al. [22]

do a similar thing but with the junction tree structure. Although

a λ-D range query can be derived based on a λ-way marginal

by aggregating the noisy frequencies of cells located in this

query, the accumulated noise lead to low result utility if the

range is large.

III. PRELIMINARIES

This section introduces necessary background knowledge

about local differential privacy (Section III-A), our problem

definition (Section III-B) and the most representative existing

methods (Section III-C).

A. Local Differential Privacy

The LDP setting involves an aggregator and a number

of (say, n) users, each of which possesses a data record ti
containing private information. To protect privacy, each user

ui (1 ≤ i ≤ n) locally perturbs her record ti and sends the

perturbed data t∗i to the aggregator. Then, the latter computes

statistical models based on the collected data from all users.

The perturbation ensures that any third party including the

aggregator cannot infer the real record ti from the perturbed

one t∗i with high confidence. Formally, LDP is defined as

follows.

Definition III.1 (ε-local differential privacy). A perturbation
mechanism f satisfies ε-LDP, if and only if for any two input
tuples t and t′ in the domain of f , and for any output t∗ of
f , we have:

Pr [f(t) = t∗] ≤ eε · Pr [f(t′) = t∗] . (1)

where ε is the privacy budget, which controls the level of pri-
vacy protection. A smaller ε means stricter privacy protection,
and vice versa.

Fundamental LDP mechanisms. A basic mechanism for

enforcing ε-LDP is Randomized Response (RR) [23], which

deals with the situation that (i) each user possesses a single

bit (i.e., either 0 or 1) of information, and (ii) the aggregator

aims to compute the number of users who possesses 1, under

ε-LDP. The recent work [5] presents a variant of the RR

mechanism, called optimized RR. Specifically, each user ui
executes optimized RR with her private record ti (i.e., a single
bit) as input, and reports the output t̃i to the aggregator, where

t̃i keeps the value of ti with probability p1 = 0.5 when ti = 1
and p0 = 1/(eε + 1) when ti = 0. The latter then computes∑

i t̃i−n·p0
p1−p0

, as an estimate for the target value
∑

i ti. Note
that the output of optimized RR can have only two possible

values, both of which can be calculated at the aggregator

without private information; hence, it suffices for each user to

transmit only a single bit to the aggregator, which minimizes

communication overhead. Optimized RR can be extended to

applications where each user’s record is not a single bit. Each

user ui possesses a categorical value ti (e.g., an emoji [24]),

and the aggregator’s goal is to estimate the frequency of each

value in the domain, under LDP. A common approach is to

transform ti into a bit vector (e.g., using one-hot encoding

[1]), and apply optimized RR to each bit in the vector [1],

[5], [25].

B. Problem definition

This paper focuses on the problem of range query on the

multidimensional data, without foreknown query workload,

i.e., any possible range query may be requested. Formally,

suppose there are n users, and ui (1 ≤ i ≤ n) denotes the ith
user. Each user ui’s private data contains d ordinal attribute
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values and is represented by a tuple ti = (t1i , t
2
i , ..., t

d
i ), where

tji indicates the jth value on attribute Aj . Without loss of

generality, we assume that all attributes have the same domain

[D]={1,2, ..., D}.
Based on the multidimensional data setting, a λ-dimensional

(λ-D) range query performs on λ different interested attributes

associated with specific ranges. Let φ1, φ2, ..., φλ be the index-

es of interested attributes and [lφi , rφi ] be the specific query

range on attribute A
φi
. Then λ-D query q can be written as

q = (Aφ1 , [lφ1 , rφ1 ])∧(Aφ2 , [lφ2 , rφ2 ])∧· · ·∧(Aφλ , [lφλ , rφλ ]).

The answer to the above range query q is the fraction of users

whose records satisfy the range constraints on all interested

attributes, which can be represented as

1

n

n∑
i=1

I∩
{
lφj≤t

φj
i ≤rφj

}λ
j=1

,

where Iγ is an indicator function whose value is equal to 1 if

the predicate γ is true and 0 otherwise.

The goal of this paper is to let the untrusted aggregator

collect data from users to construct LDP-compliant frequency

estimations on some well-chosen subintervals, in order to

maximize the result utility of all possible range queries.

C. Existing methods

In the following, we presents several representative works

for range queries under LDP.

Discrete Haar Wavelet Transform (DHT). DHT [14] choos-

es the Haar wavelet coefficients as the auxiliary information

for answering range queries on one-dimensional data. Specifi-

cally, such coefficients can be organized by a complete binary

tree, in which each leaf corresponds to the frequency on a unit

from the attribute domain. And the non-leaf node corresponds

to a coefficient which is equal to the difference between the

frequency sum of leaves from left subtree and the one from

right subtree. DHT splits users into disjoint parts, each of

which is involved in computing the coefficients from one layer

under LDP. Based on the noisy coefficients, any range query

can be answered. The main benefit for DHT is that a range

query with large length can be answered with a small number

of coefficients, which can improve the result accuracy.

Hierarchical Interval Decomposition (HIO). HIO [15] de-

composes the attribute domain into some intervals and the

frequency estimations on these intervals are regarded as the

auxiliary information to answer range queries. In particular,

it relies on the hierarchical tree with fanout k to iteratively

decompose the domain into k sub-domains uniformly until

minimum granularity units on the domain are reached. The

domain to be decomposed corresponds to one node in the tree

and the decomposed sub-domains correspond to k children.

Then HIO splits users into disjoint parts, each of which is

involved in estimating the numbers of users located in the

sub-domains on one layer under LDP. Based on that, any

range query can be answered by using the minimum number

of intervals from different levels, thus substantially reducing

the cumulative error.

Adaptive Hierarchical Interval Decomposition (AHEAD).
Similar to HIO, AHEAD [16] also follows the hierarchical

decomposition framework to derive the auxiliary information.

The main difference between them is that AHEAD adaptively

decides whether a node (interval) continues to being decom-

posed by comparing the associated frequency with a threshold.

Such operation could avoid decomposing the intervals with

small frequencies, since small frequencies are usually useless

and overwhelmed by the noise injected. On the other hand,

when answering multidimensional range queries, Du et al. [16]

directly apply the above mechanism and use disjoint parts

of users to decompose the 2-dimensional domains of all

attribute pairs. Then give a λ-D query, AHEAD derives C2
λ

2-D sub-queries, each of which can be answered based on the

corresponding hierarchical structures. With these results, the

maximum entropy principle is run to achieve the estimation

for this λ-D query.

Grid Decomposition (HDG). HDG [17] is proposed to answer

multidimensional range queries. Different from the methods

above, HDG adopts the frequency estimations on grids as the

auxiliary information to answer range queries. In particular,

given two parameters g1 and g2 customized with ε, HDG

partitions the one-dimensional domain of each attribute into

g1 grids and two-dimensional domain of each attribute pair

into g2 × g2 grids. Then the users are split into d+C2
d parts,

each of which is involved in the frequency estimations on 1-

D or 2-D grids. With these estimations on attributes Aj , Ak

as well as attribute pair (Aj , Ak), HDG iteratively constructs

the response matrix for any attribute pair (Aj , Ak), which is

used to answer 2-D range queries. Finally, HDG uses a similar

way to AHEAD to answer any λ-D range query based on 2-D

range query results. The main benefit of HDG is that it uses

1-D grids to capture finer-grained information to optimize the

estimations of 2-D grids, thus improving the result accuracy.

Prefix-sum-based Cube Construction (PRISM). PRIS-

M [26] constructs one-dimensional prefix-sum cube on each

attribute and two-dimensional cubes on some carefully cho-

sen attribute pairs respectively as the auxiliary information

to answer range queries. Specifically, for an attribute with

domain D, PRISM collects information from users to derive

the frequency estimation for range queries [1, i] for any

i ∈ [1, |D|] with sensitivity |D|, which forms the prefix-sum

cube associated with this attribute. Then for any range query

[p, q], PRISM can answer it by using 2 pieces of prefix-sums

from ranges [1, p] and [1, q]. However, the high sensitivity

|D| for prefix-sum publication leads to useless prefix-sum

results. PRISM alleviates it by decomposing the domain into g
parts uniformly and just publishing prefix-sums on the coarse-

grained domain. In this way, it reduces the sensitivity from |D|
to g. Following that, PRISM calculates the two-dimensional

prefix-sum cubes among k attributes, which are selected by its

attribute selection strategy. Finally, given a λ-D range query,
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it uses the existing prefix-sums cubes related to this queries

and runs the maximum entropy model to derive the query

result. Although PRISM can use fewer noisy estimations to

answer each query, the error variance of each estimation is big.

That makes the prefix-sum-based technique usually perform

worse than the hierarchical decomposition-based technique.

We analyze the error variances from these two kinds of

methods in Appendix.A in the full version [27] of this paper.

In summary, no matter the methods for one dimensional

queries or multidimensional ones, all of them decompose a

given domain in a uniform manner. Recall that these works

and ours all aim to answer all possible range queries. It is

undoubtedly different sub-domains are involved in different

number of range queries. Uniform decomposition leads to

some frequently used sub-domains with high noise, further

generating significant performance penalty.

IV. PRIVNUD:DYNAMIC NON-UNIFORM DECOMPOSITION

This section describes our proposal privNUD, a novel dy-

namic domain decomposition mechanism with a non-uniform

granularity. To better show it, we firstly use an example to il-

lustrate the motivation in Section IV-A. And then Section IV-B

presents a general framework of privNUD. Following that,

Sections IV-C and IV-D derive a guideline to choosing decom-

position granularity for each sub-domain and a prune strategy

tailored for privNUD respectively. Finally, Section IV-E in-

troduces how to answer multidimensional range queries with

privNUD.

A. Motivation

We use an example to illustrate the limitation of the existing

hierarchical decomposition mechanism with uniform granu-

larity [14]–[16] and the rationality of privNUD. Recall that

Fig. 1 has demonstrated that different sub-domains can answer

different numbers of queries. Fig. 2(a) gives a customized

decomposition granularity solution, so that the sub-domain

with a big query number like [5, 9] can have a shorter sub-tree

and then be allocated more users, to improve query accuracy.

And the value in grey shadow also denotes the number of

queries answered by the associated sub-domain and here it is

termed as weight. We measure the performance of the different

granularity choices by the error variance, which is imported

when answering related queries using the sub-tree rooted by

the given sub-domain. Here, the related queries include not

only the ones directly answered by this sub-domain, but also

those directly answered by its descendant sub-domains in the

sub-tree. Since queries are answered by the given sub-domain

and/or its descendants, we can compute the partial error caused

by each of them, and then sum up partial errors as the error

variance. The partial error is the product of the weight and the

estimation error about the noisy frequency of a sub-domain.

The latter is expressed by A
n′ , where A is a value related to

ε and n′ is the number of allocated users. Take the sub-tree

rooted by [0, 4] as an example. We can compute the error

variance by (59 + 3 + 123 + 1 + 63 + 3 + 61) ∗ A
1/3∗X +

240 ∗ A
2/3∗X = 1299A/X , where X denotes the number

Fig. 2. An example to illustrate the motivation of non-uniform decomposition

of users available for the sub-tree rooted with [0, 4]. Here

the factor 2
3 is because [4, 4] does not have children, and

then users originally allocated to its children are now used

by it. Fig.2(b) shows a counterpart that sub-domains [0, 4]

and [5, 9] exchange their granularity choices. Then the errors

respectively increase to 1358A/X and 2109A/X . This reveals

that using the uniform decomposition granularity for [0, 4] and

[5, 9] with fanout 3 or 5 achieves sub-optimal performance,

compared with the customized policy employed in Fig.2(a).

Thus, we are motivated to apply non-uniform decomposition

granularity for different sub-domains to achieve better query

accuracy.

B. The framework of privNUD

This section describes the general framework of the pro-

posed solution privNUD, highlighting its novel dynamic non-

uniform decomposition design and leaving out several impor-

tant details that are covered later in Sections IV-C and IV-D.

It is obvious that with the non-uniform decomposition gran-

ularity setting, the size of possible hierarchical tree structures

is so large that it is hard to find the one providing the

most accurate results for range queries. To tackle with that,

privNUD adopts a heuristic algorithm to iteratively search a

better granularity for the domain to be decomposed, in order

to improve the performance when answering all possible range

queries. It is worth mentioning that the uniform hierarchical

tree in the existing methods [14]–[16] is the worst case from

privNUD, which makes privNUD yield a better performance

than uniform hierarchical decomposition. Besides, a direct

negative effect imported by non-uniform decomposition is that

the paths on the tree are with different lengths. That makes

the traditional way for data collection not applicable, which

groups users into disjoint parts and each part is involved in the

frequency estimations on the sub-domains from the same level.

So privNUD adopts an adaptive allocation strategy, which

decides the number of users allocated to one node based on

the domain adaptively.

Based on the above clarifications, we design the adaptive

non-uniform decomposition tree construction algorithm at

the aggregator, shown in Alg. 1. Specifically, the aggregator

initializes the tree T with a root node vr, which is associated

with the whole attribute domain and takes all users as available

users (Lines 1-2). Then, starting from the root, the aggregator

iteratively splits nodes, as follows. Given a non-leaf node v, the
aggregator firstly chooses a proper decomposition granularity
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Algorithm 1: PrivNUD Tree Construction

Input : All users’ data set {u1, u2, · · · , un}, attribute domain
D, privacy budget ε

Output: PrivNUD Tree T
1 Initialize the tree T with a single root node vr associated with
domain D, and mark vr as unvisited;

2 Set available user set U(vr) for root vr to {u1, u2, · · · , un};
3 while there exists an unvisited non-leaf node v do
4 Mark v as visited;
5 Let U(v) be the set of available users for node v;
6 Let D(v) be the domain associated with node v;
7 Compute the best decomposition granularity g of D(v)

based on Section IV-C;
8 Randomly sample

|U(v)|
logg |D(v)|+1

users U ′ from U(v);

9 Apply optimized RR to collect information from U ′ using
privacy budget ε, in order to derive the estimated frequency
f ′(v) of v;

10 if f ′(v) satisfies the undecomposable condition in
Section IV-D then

11 Apply optimized RR to collect information from
U(v) − U ′ using privacy budget ε, to refine the
estimated frequency f ′(v) of v;

12 Mark v as a leaf node;
13 Continue;

14 Divide domain D(v) into g disjoint sub-domains {Di(v)};
15 for k from 1 to g do
16 Add a child vc of v with sub-domain Dk(v);
17 Initialize estimated frequency f ′(vc) to 0;
18 Initialize available user set U(vc) to U(v) − U ′;
19 Mark vc as unvisited;

20 Post-process the frequencies in nodes of T to enforce
consistency;

21 return T .

g for its associated domain D(v) (Line 7). Then based on

the current granularity g, she temporarily regards the height

of the sub-tree with root as v is logg |D(v)| + 1. So she

chooses
|U(v)|

logg |D(v)|+1 users from v’s available users set U(v) to

compute an estimate f ′(v) of f(v), the number of users with

values located in D(v). Let U ′ be the set of chosen users (Line

8). The other users in U(v), i.e., the ones in U(v)−U ′ are left
for the frequency estimations of the remaining nodes in this

sub-tree. Then she invokes the LDP perturbation component

optimized RR clarified in Section III-A to collect data from

U ′ to derive the estimate f ′(v) (Line 9). Then, she checks if

f ′(v) satisfies an undecomposable condition, which prevents

the sub-domain with small frequency from being decomposed,

since small frequencies trend to be overwhelmed by the

injected noises. Such condition setting is nontrivial which

needs to consider the true data distribution, query distribution

as well as decomposition granularity. We discuss this in detail

in Section IV-D. If the condition is satisfied, the aggregator

marks v as a leaf node and uses all the remaining user

data U(v) to refine the estimated frequency of this node

(Line 11); otherwise, the domain D(v) is split g sub-domains

evenly, each corresponding to one child vc of v and vc is

with the remaining users in U(v)− U ′ as the available users

Fig. 3. An example to show the non-uniform decomposition mechanism

(Lines 14-19). After that, the aggregator continues to the next

iteration, and attempts to decompose another domain with

a non-leaf node in the tree. When there exists no unvisited

non-leaf node, the iteration terminates and the non-uniform

hierarchical decomposition is derived. Since the aggregator

collects data from users to estimate the frequencies from

different nodes independently, the consistency between the

parent node’s frequency and the sum of children nodes’

frequencies is destroyed. So a post-processing operation on

the tree for consistency enforcement is used to boost the result

accuracy further.

Fig. 3 shows a possible tree structure output by privNUD in

Alg. 1. The nodes can have different fanouts, i.e., the domains

associated with these nodes are decomposed with different

granularities. Besides, the lengths of the paths from leaves

to root are various. The grey boxes besides the nodes indicate

the users allocated to this node for frequency estimation and

the height reflects the number of users. Obviously, the scale of

users for each node is different even for the nodes in the same

level. This is done mainly through an adaptive user allocation

strategy. When the aggregator plans to compute one node’s

frequency, she estimates the length l of the path from leaf to

this node with current decomposition granularity and splits the

available users into l parts. Only one part of users is allocated

to the node. Different decomposition granularities tailored for

domains lead to different scales of users in this part, which

makes user allocation adaptive to the domain.

Theorem IV.1. Alg. 1 satisfies ε-LDP.

Its proof appears in Appendix.B in the full version [27] of

this paper.

C. Adaptive decomposition granularity choosing

In privNUD, the key issue is of course the granularity

choosing which controls the structure of hierarchical tree and

decides the performance of our proposal. This section gives

a guideline to choose a proper granularity tailored for each

domain to be decomposed.

Recall that this paper aims to construct the hierarchical

decomposition tree to optimize the result accuracy of all

possible queries generated from the attribute domain. Namely,

the goal is to minimize the average error variance for all range

queries. On the other hand, when choosing a granularity for

domain [lv, rv] associated with node v, the one associated with

the parent node p(v) has been known, due to the iterative
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construction manner. So the granularity for [lv, rv] just has an
effect on the error variances of the queries that intersects with

this domain or covers this domain but intersects with the one

associated with p(v), since hierarchical decomposition mecha-

nism answers a query with the coarse-grained sub-domains this

query covers instead of the fine-grained ones. Consequently,

we aim to choose the decomposition granularity for [lv, rv] by
minimizing the sum of error variances brought by answering

the effected queries with the decomposed sub-domains from

[lv, rv]. For example, as shown in Fig. 1, assuming we want

to find a proper decomposition granularity for domain [4,7],

different decomposition affects the intersected queries such as

query [2,5] and the ones covering domain [4,7] but not [0,7]

such as query [3,7]. So we want to optimize the error variances

of these queries which are caused by the noisy estimations of

decomposed sub-domains or this domain [4,7] itself.

Based on the above analysis, we can derive an objective

function for the decomposition granularity choosing as fol-

lows, ∑
q∈Qa

∑
o∈N(q,g)

E(o, g),

where Qa denotes the effected queries with [lv, rv], N(q, g)
denotes the decomposed sub-domains from [lv, rv] involved
in answering query q with granularity as g and E(o, g) is the
error variance of frequency estimation for sub-domain o. And
the above expression can be written as

∑
o∈N(g)

ω(o)E(o, g).
(2)

where N(g) denotes the set of decomposed sub-domains with

granularity g and [lv, rv] itself, and ω(o) denotes the number

of queries answered by sub-domain o. The value for ω(o) can
be computed by the number of queries covering o minus the

number of ones covering o’s parent p(o), where we slightly

abuse o to denote the node associated with domain o. Let
lo (ro) and lp(o) (rp(o)) be the left (right) points of domain

o and her parent domain p(o) respectively. ω(o) is equal to

(lo + 1) · (D − ro)− (lp(o) + 1) · (D − rp(o)).

On the other hand, assuming n′ is the size of v’s available
users set U(v), with granularity g, the height of the hierarchi-

cal sub-tree with root v is logg(rv−lv+1)+1. PrivNUD plans

to adopt optimized RR [5] to collect data from n′
logg(rv−lv+1)+1

users to derive the frequency estimations of sub-domains in

each level. Based on the conclusion from [5], the error variance

E(o, g) is
4[logg(rv−lv+1)+1]eε

n′(eε−1)2
.

Observing Eqn.2, we find that a smaller granularity g
means fewer times of sub-domains used to answer the effected

queries, but a higher sub-tree structure, further more noises

injected to frequencies of each decomposed sub-domain. So

there is a tradeoff between ω(o) and E(o, g). We can traverse

all g from 1 to D(v) to find the granularity which minimizes

Eqn.2.

D. Undecomposable condition setting
When constructing the non-uniform decomposition tree, for

a domain with smaller frequency, it is pointless to continue

decomposing this domain. That is because small frequency

trends to be overwhelmed by the injected noise, further useless

results generated. So it is an effective way to improve result

accuracy by stoping decomposing the sub-domain with smaller

frequency and estimating the frequency distribution on the

domain with uniform distribution assumption.
The key issue is of course the undecomposable condition

setting. If the condition is too strict, the sub-domains with

relatively bigger frequencies stop being decomposed, which

leads to higher error brought by the uniform distribution

assumption; otherwise, useless results dominated by noise are

generated. So we need to do a thorough analysis about the

error variances generated in the two cases, with decomposition

or without decomposition. And then a decision is generated

based on the comparison of error variances. We show the error

analysis in the following.

The case with decomposition. As shown in Alg. 1, if node v
with noisy frequency f ′(v) continues to be split, the optimal

decomposition granularity g has been known, since the number

of users for computing f ′(v) depends on g. So the error

variances of queries results incurred by v and its children c(v)
can be written as

[ω(v) +
∑

x∈c(v)
ω(x)] · 4eε

n1(eε − 1)2 (3)

where n1 = |U(v)|
logg |D(v)|+1 . Note that we just consider the query

errors brought by v and v’s children, not other descendant

nodes. That is because these nodes are often judged as pruned

in the subsequent iterations.

The case without decomposition. Recall that if node v is not

split further, all of the available users owned by v are involved

in computing f ′(v), which is shown in Lines 9 and 11. So the

error variance for f ′(v) is 4eε

(|U(v)|)(eε−1)2
. With the uniform

distribution assumption, given a decomposition granularity g,
the frequency for the sub-domain associated with v’s child is

estimated as
f ′(v)
g . So the error variances of queries results

incurred by v and its children c(v) can be written as

4ω(v)eε

(|U(v)|) (eε − 1)
2 +

∑
x∈c(v)

ω(x) ·
(
f ′(v)
g

− f(x)

)2

When the real data distribution is extremely skewed on

D(v), i.e., the users located in D(v) is all located in the sub-

domain associated with v’s child x∗, the above equation has

the maximum, which is listed as follows.

4ω(v)eε

(|U(v)|) (eε − 1)
2 +

∑
x∈c(v)−{x∗}

ω(x) ·
(
f ′(v)
g

)2

+ ω(x∗)
(
f ′(v)
g

− f(v)

)2
(4)
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Fig. 4. The framework for multidimensional range queries

To derive the maximum of the above Equation, we let x∗ be

argmaxx∈c(v) ω(x) and set f(v) as f ′(v). If Eqn.3 is smaller

than Eqn.4, node v continues to be split, and stops otherwise.

E. Extend to Multi-dimensional Scenarios

Our proposal privNUD can answer one-dimensional range

queries with great accuracy improvement over the existing

methods shown in Section V-A. However, many datasets in

practice have more than one dimensions. It is thus important to

apply privNUD for processing multidimensional range queries.

To our knowledge, the current state-of-the-art techniques

for multidimensional range queries are the grid-based and

hierarchical tree-based methods, both of which rely on the

frequency estimations on 1-D and 2-D structures to support

the multidimensional queries. We find that hierarchical tree-

based method works well on the 1-D range queries, since

many sub-domains are constructed and the large range query

can be answered with fewer sub-domains. However, on 2-D

domain, it just performs better on the data with strong attribute

correlations. In most cases, grid-based method performs better

for 2-D queries, since it uses more users with scale of n
d+C2

d
to

compute the frequency estimations on the sub-domains from

a 2-dimensional domain and can provide a better estimation

results. In contrast, hierarchical tree-based method just uses
n

h·C2
d
users to estimate the frequencies of sub-domains, where

h denotes the height of a tree. Usually useless results are

generated. Because of this, we prefer to use different structures

to build 1-D and 2-D domain decomposition. In particular,

we adopt privNUD to derive the frequency estimations on

the 1-dimensional domain and then use the 1-dimensional

estimations to refine the estimations from 2-dimensional grids.

As shown in Fig. 4, the framework for multidimensional range

queries includes four steps, which are described as follows:

Step 1: constructing non-uniform decomposition sub-

domains on 1-dimensional domains. The aggregator random-

ly chooses αn users, which are split into d groups evenly.

Taking each group of users as input, privNUD constructs the

non-uniform hierarchical decomposition tree for one dimen-

sion. With the consistency enforcement technique in privNUD,

the frequency distribution estimations on the 1-dimensional

domain can be derived.

Step 2: constructing the grids.With the same grid granularity

setting as that in [17], the aggregator splits the 2-dimensional

domain for any attribute pair into g2×g2 grids. The remaining

(1−α)n users are split into C2
d groups, each of which is used

to estimate the frequency distribution estimation on the grids

from one attribute pair.

Step 3: generating the response matrix. To generate re-

sponse matrix for the attribute pair (Aj , Ak), we use the fre-

quency distribution estimations on Aj and Ak from privNUD

as well as the one on the grids of attribute pair (Aj , Ak). And
a similar way to [17] is adopted to build the matrix.

Step 4: answering λ-dimensional range queries. Following
the classical way in [17], [21], [28], [29], given a λ-D
range query q, the aggregator splits q into C2

λ associated 2-

D range queries, each of which can be answered with the

response matrix. Based on the C2
λ results, the “weighted update

technique”2 [17], [28], [29] is applied to derive the estimation

of the answer to q.

A guideline to set α. Since the ratio of users allocated for

Step 1 can directly affect the utility of privNUD, we design

the following guideline for setting α.
The goal of a proper α setting is to guarantee that the fre-

quency estimations for one-dimensional and two-dimensional

sub-domains are with the same scale of error, since both

2We describe it in Appendix.C in the full version [27], since it is beyond
the main scope of this paper.
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Fig. 5. Result accuracy for 1-D range queries on real datasets by varying privacy budget ε.

the estimations have an effect on the result accuracy of a

multidimensional query. For the estimation of one-dimensional

sub-domain, it is challenging to express its error variance in

a formula. That is because the adaptive decomposition mech-

anism may make the nodes absorb different number of users

to derive the frequency estimations. To tackle that, we use

the error variance from uniform hierarchical decomposition

structure with fanout 2 as the upper bound of estimation

error from privNUD, which is written as 4d logDeε

αn(eε−1)2 . As for

the estimations on two-dimensional sub-domains, the error

variance is
4C2

de
ε

(1−α)n(eε−1)2 . By letting these two error variance

be equal, we have α = d logD
C2
d+d logD

.

V. EXPERIMENTS

This section evaluates privNUD against four state-of-the-

art techniques for range query processing under LDP, D-

HT [14], AHEAD [16], HDG [17] and PRISM [26]. For a

fair comparison, these four methods are applied with the same

parameter setting as in the original papers. Note that we do not

consider another existing solution HIO [15], since it is shown

in [14], [17] to be inferior to DHT on 1-D range queries and

HDG on multidimensional ones. Besides, we also implement a

version of privNUD with splitting the privacy budget instead of

splitting users as a competitor, which is termed as privNUD-B.

All experiments were performed on a PC with Intel(R)

Xeon(R) E-2224G CPU @ 3.50GHz and 16 GB of memory.

Datasets. We conduct experiments on five real datasets and

four synthetic datasets. Among these real datasets, there

are four low-dimensional datasets and one high-dimensional

dataset. Table II-Table V in Appendix.D in the full version [27]

show the correlations between two attributes on the low-

dimensional real datasets.

• Salaries [30]: The dataset is around 149 thousand records

with 5 attributes “BasePay”, “OvertimePay”, “OtherPay”,

“TotalPay” and “TotalPayBenefits” about San Francisco

employee salaries from 2011 to 2014.

• Adult [31]: The dataset is from the UCI ML repository

with about 33 thousand records with 5 attributes “Age”,

“Fnlwgt”, “Capital-gain”, “Capital-loss” and “Hours-per-

week”.

• Loan [32]: The dataset contains the club’s data on loans

originated from 2007 to 2018. It contains around 2

million records with 5 attributes “Loan amnt”, “Int rate”,

“Installment”, “Annual inc” and “Total pymnt”.

• Bfive [33]: The dataset is collected by an interactive

online test platform that describes the time spent on each

problem in milliseconds, with around 1 million records

with 5 attributes “EXT1 E”, “EXT2 E”, “EXT3 E”,

“EXT4 E” and “EXT5 E”.

• Ipums [34]: The dataset is from the IPUMS repository

with around 3 million records and 30 attributes.

• Normal (Laplace): The datasets are synthesized from a

multidimensional Normal (Laplace) distribution with a

mean of 0 and a variance of 1. To show the performance

on the datasets with different scales of users, the ones

with 1 million and 10 million records are generated

respectively. The settings are the same as that in [16].

Utility Metric. Following previous works [14], [16], we assess
the performance of each technique based on mean square

error, which is defined as
∑
q∈Q(fq−f∗q )

2

|Q| for a query set Q,

where f∗(q) (f(q)) denotes the noisy (true) answer to query q.
For each experimental setup, we randomly choose 200 queries

from the attribute domains to form the set Q and show the

result accuracy of these queries.

A. Evaluation Results on 1-D Range Query

In this part for 1-D range query, we just compare our

proposal with the competitors DHT, AHEAD, PRISM and

privNUD-B, in which HDG is omitted due to its feasibility

only for multidimensional range queries. We choose attributes

“Total pymnt”, “EXT1 E”, “Age” and “TotalPayBenefits”

from the datasets “Loan”, “Bfive”, “Adult” and “Salaries”

respectively to form one-dimensional datasets for evaluations.

The same as that in Ref. [16], we also use different bucketize

granularity {256, 512, 1024, 2048} to bucketize the records

from different datasets so that the evaluations are run on

various domain size settings. Note that privNUD is qualified to

process the dataset with any attribute domain size, not limited

to the one with domain size equaling to a power of 2.

Fig. 5 shows the MSEs for comparing privNUD against

all the competitors by varying ε from 0.1 to 1.5 on four

real datasets. As expected, observe that privNUD consider-

ably outperforms the other other competitors. The superior

performance of the former is due to its dynamic decomposition
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Fig. 6. Result accuracy for 2-D range queries on real datasets containing 5 attributes by varying privacy budget ε.
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Fig. 7. Result accuracy for 3-D range queries on real datasets containing 5 attributes by varying privacy budget ε.
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Fig. 8. Result accuracy for 5-D range queries on real datasets containing 5 attributes by varying privacy budget ε.
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Fig. 9. Evaluation on the high dimensional dataset Ipums.

granularity deciding strategy, which can achieve a better gran-

ularity and improve the result accuracy of queries involving

the decomposed domain. As for the privacy budget splitting

method privNUD-B, its theoretical error variance is roughly

h times as big as that of privNUD with splitting users, where

h denotes the number of parts that users or budget is split

to. That offsets the performance gain brought by the adaptive

decomposition granularity choosing technique, further leading

to inferior performance of privNUD-B. Besides, it is also

observed that the hierarchical tree-based methods includ-

ing AHEAD and privNUD are superior to prefix-sum-based

PRISM on the one-dimensional datasets. The main reason is

that PRISM collects data with sensitivity as g to derive the

frequency estimations involved in the prefix-sum cube. The

high sensitivity leads to big error variance in the estimations,

further low query accuracy, even if only two estimations are

used to answer any query. In addition, Fig. 5 also shows

that privNUD obtains different performance improvement over

various datasets. For the dataset with smaller domain Loan,

privNUD is slightly better than DHT and AHEAD. But for the

ones with larger domain Bfive, Adult and Salaries, privNUD

achieves significant advantages over the other two methods.

We speculate that this is mainly because with larger domains,

more hierarchical decomposition need to be carried out, which

provides more chances for our decomposition mechanism,

leading to significant performance improvement.

B. Evaluation Results on Multidimensional Range Query

In this set of experiments, we consider the task of range

queries on multidimensional data under LDP. We just compare

our proposal with the competitors HDG, AHEAD, PRISM and

privNUD-B, in which DHT is omitted due to its feasibility

only for 1-D range queries.

Evaluations on low-dimensional datasets. Fig.6-Fig.8 illus-

trate the performance of privNUD and its competitors on

four low-dimensional datasets and various privacy budgets

for 2-D, 3-D and 5-D range queries respectively. For a fair

comparison, we bucketize each attribute domain from the real

datasets into 64 bins, which is the same as the processing

involved in AHEAD and HDG. Not surprisingly, the accuracy

of all approaches becomes better when ε grows. Among

these approaches, in most cases, privNUD performs the best
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Fig. 10. Result accuracy for 3-D range queries on synthetic datasets with cov = 0.2 and ε = 1 by varying dimensionality.
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Fig. 11. Result accuracy for 3-D range queries on synthetic datasets with d = 5 and ε = 1 by varying covariance.
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Fig. 12. Result accuracy for 5-D range queries on synthetic datasets with d = 5 and ε = 1 by varying covariance.

and roughly one order of magnitude better than the other

approaches. This is because the customized decomposition

granularity for each decomposing domain imports a smaller

overall estimation error for the queries involving this domain

than the counterparts including HDG, PRISM and AHEAD

those employ the uniform decomposition. Besides, we also ob-

serve that privNUD achieves a high accuracy on the Loan and

Adult datasets, where the MSE of privNUD on Adult is almost

two order of magnitude smaller than the competitors except

privNUD-B. For the Salaries and Bfive datasets, privNUD has

obvious advantages in the low ε region, but the improvement is

less significant for a larger ε. The main reason for remarkable

performance improvement on Loan and Adult is that the

correlations among attributes on the two are weak as shown in

Tables IV and II in Appendix.D in the full version [27]. That

makes the result accuracy for multidimensional range query be

dominated by the frequency estimations on 1-D domains, since

privNUD adopts estimations from 1-D to capture finer-grained

information for the 2-D grids with attribute independence

assumption. And our dynamic decomposition mechanism can

provide better estimations on 1-D domains, further significant

performance improvement for multidimensional queries. On

the other hand, the attributes on the other two datastes are with

strong correlations as shown in Tables III and V in Appendix.D

in the full version [27], which makes the correlation capture

for any attribute pair more significant. In this way, with high

ε, a more accurate pruning judgement result in AHEAD or

a more fine-grained grids in HDG can play an important

role in correlation capturing, which makes them obtain good

accuracy on Adult and Salaries. In spite of this, we can see that

the utility of privNUD is still comparable to the competitors

except that in Fig. 8(d). The reason for this outlier is that

high attribute correlations and large scale of users on Bfive

contribute to AHEAD finding a better decomposition for 2-D

domains, further more accurate estimations on 2-D domains.

On the other hand, with the increasing of query dimensionality,

more answers to 2-D range queries are involved. Further, the

superiority of AHEAD on 5-D range queries is reflected more

clearly. In addition, we also observe that PRISM performs

better than the hierarchical tree-based method AHEAD in

some cases on the multidimensional datasets. That benefits

from the attribute selection strategy for constructing prefix-

sum cubes on partial attribute pairs, instead of all possible

pairs. Note that Fig.8 does not show the performance of

PRISM. That is because when estimating λ-D range queries

with 1-D and 2-D prefix-sum cubes, PRISM needs to generate

an intermediate matrix with size gλ × gλ. When λ = 5 and

g = 10, it requires a large size of memory and leads to memory

overflow.

Evaluations on high-dimensional datasets. Fig. 9(a) reports
the MSEs of 4-D range queries for comparing privNUD

against all the competitors on the high dimensional dataset
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Ipums, which is used in the work [26] for evaluating PRISM.

This dataset contains 30 attributes, each of which is with

the domain size as 30. Here, we also use the same budget

setting {1, 2, 3, 4, 5} as that in Ref. [26]. Not surprisingly, it

is shown that privNUD still outperforms the other competitors

on the high dimensional dataset on all εs. Besides, it is worth

noting that PRISM consistently performs better than the other

competitors on Ipums, instead of in some cases on the low-

dimensional datasets shown in Fig. 6-Fig. 8. That is because

for high dimensional datasets, the attribute selection strategy in

PRISM can remove more attributes for 2-D prefix-sum cubes

construction, which makes it obtain good accuracy. In spite of

this, we can see that the utility of privNUD is still superior to

PRSIM. Fig. 9(b) shows the MSEs of range queries by varying

the query dimensionality λ on Ipums with ε as 1. It is observed
that the MSEs of all methods are inversely proportional to λs.
The main reason is that a higher query dimensionality means

more noisy estimations for 1-D and 2-D queries take part

in estimating λ-D range queries. With the “weight update”

technique, that can be thought more consistency constraints

are used to derive the estimations of λ-D queries, which leads

to query accuracy improvement.

C. Impact of Different Parameters

This section evaluates the performance of our proposal and

competitors on the datasets with different dimensionalities,

attribute correlations and parameter αs respectively.

The impact of dimensionality. In this part, we use synthetic

datasets following multidimensional Normal or Laplace dis-

tribution with correlation coefficient cov = 0.2 to evaluate

this impact on ε = 1, where the coefficient setting better

reflects the correlations in real datasets as shown in Tables II-

V in Appendix.D in the full version [27]. Fig.10 illustrates

the MSEs of five methods by varying dimensionality d of

datasets. Not surprisingly, privNUD consistently outperforms

the other methods. Besides, we observe the performance of

AHEAD drops sharply with the increment of d, while that

of grids-based or prefix-sum-based methods changes slightly.

The main reason is that with the increment of d, users need

to be split into more groups, each of which is involved in

frequency estimations for a 2-D domain. Further, AHEAD

splits each group of users into h smaller sub-groups for

computing frequency estimations on the sub-domains in one

level, where h is 6 on the datasets in this figure. Instead

of that, grid-based methods just use the whole users in one

group to derive the estimations on a 2-D grid. Obviously,

increased dimensionality has a bigger effect on the number

of users involved in the frequency estimation of a sub-domain

in AHEAD, which leads to heavy performance penalty. As for

PRISM, it adopts attribute selection strategy to remove some

attributes and reduce the number of 2-D prefix-sum cubes,

which weakens the effect of increased dimensionalities.

The impact of correlation. This section studies the impact of

the correlation between two attributes measured by covariance

based on the synthetic datasets with 5 attributes. As shown in
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Fig. 13. Result accuracy for 4-D range queries with ε = 1 by varying α.

Fig. 11 with 3-D range queries, the MSE of privNUD is two

orders of magnitude lower than that of AHEAD or PRISM.

Compared with HDG, privNUD has obvious performance im-

provement in the low covariance region, but the improvement

is slight for a large covariance. Fig. 12 shows the results with

5-D range queries. It is observed that these methods perform

similarly to that in Fig. 11, except that AHEAD shows a better

result accuracy with high covariance. Such phenomena are

consistent with those in Section V-B. Besides, it also describes

that the margin between HGD and privNUD is larger on the

datasets with more users in small covariance. The main reason

is that smaller covariance means a lower attribute correlation,

which makes the accuracy of frequency estimations on 1-

D dominate the accuracy of multidimensional queries. And

more users reinforce the benefit of our proposed dynamic

decomposition strategy, which leads to significant accuracy

improvement.

The impact of α. In this set of experiments, we take the low-

dimensional dataset Adult and high-dimensional dataset Ipums

as examples to evaluate the effectiveness of guideline for α
setting. Fig. 13 reports the MSEs of privNUD by varying α,
where α is set as 75% on Adult and 25% on Ipums by our

designed guideline respectively. It is shown that the MSEs

are concave with the increase of α and our guideline can help

privNUD to achieve the result accuracy close to that in “sweet

spot”, which means that the guideline for α setting can work

well under the datasets with different dimensionalities.

VI. CONCLUSION

This paper investigates the problem of range queries under

ε-LDP. We propose privNUD which dynamically decompos-

es each domain with a tailored granularity into some sub-

domains, by considering their potential chances to answer one

range query. In the future, we plan to publish multiple versions

of 2-D grids with different granularities to capture attribute

correlations better while consuming less privacy budget.
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[1] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. RAPPOR:
randomized aggregatable privacy-preserving ordinal response. In CCS,
pages 1054–1067. ACM, 2014.

[2] Apple differential privacy team. Learning with privacy at scale.
https://machinelearning.apple.com/research/learning-with-privacy-at-scale,
2017.

[3] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. Collecting
telemetry data privately. In NIPS, pages 3571–3580, 2017.

[4] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith.
Calibrating noise to sensitivity in private data analysis. In TCC, volume
3876 of Lecture Notes in Computer Science, pages 265–284. Springer,
2006.

[5] Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. Locally
differentially private protocols for frequency estimation. In USENIX
Security Symposium, pages 729–745. USENIX Association, 2017.

[6] John C. Duchi, Michael I. Jordan, and Martin J. Wainwright. Local
privacy and statistical minimax rates. In FOCS, pages 429–438, 2013.

[7] Wahbeh H. Qardaji, Weining Yang, and Ninghui Li. Understanding
hierarchical methods for differentially private histograms. Proc. VLDB
Endow., 6(14):1954–1965, 2013.

[8] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. Boosting
the accuracy of differentially private histograms through consistency.
Proc. VLDB Endow., 3(1):1021–1032, 2010.

[9] Jun Zhang, Xiaokui Xiao, and Xing Xie. Privtree: A differentially private
algorithm for hierarchical decompositions. In SIGMOD Conference,
pages 155–170. ACM, 2016.

[10] Graham Cormode, Cecilia M. Procopiuc, Divesh Srivastava, Entong
Shen, and Ting Yu. Differentially private spatial decompositions. In
ICDE, pages 20–31. IEEE Computer Society, 2012.

[11] Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke. Differential
privacy via wavelet transforms. IEEE Trans. Knowl. Data Eng.,
23(8):1200–1214, 2011.

[12] Chao Li, Gerome Miklau, Michael Hay, Andrew McGregor, and Vibhor
Rastogi. The matrix mechanism: optimizing linear counting queries
under differential privacy. VLDB J., 24(6):757–781, 2015.

[13] Ryan McKenna, Gerome Miklau, Michael Hay, and Ashwin Machanava-
jjhala. Optimizing error of high-dimensional statistical queries under
differential privacy. Proc. VLDB Endow., 11(10):1206–1219, 2018.

[14] Graham Cormode, Tejas Kulkarni, and Divesh Srivastava. Answering
range queries under local differential privacy. Proc. VLDB Endow.,
12(10):1126–1138, 2019.

[15] Tianhao Wang, Bolin Ding, Jingren Zhou, Cheng Hong, Zhicong Huang,
Ninghui Li, and Somesh Jha. Answering multi-dimensional analytical
queries under local differential privacy. In SIGMOD Conference, pages
159–176. ACM, 2019.

[16] Linkang Du, Zhikun Zhang, Shaojie Bai, Changchang Liu, Shouling
Ji, Peng Cheng, and Jiming Chen. AHEAD: adaptive hierarchical
decomposition for range query under local differential privacy. In CCS,
pages 1266–1288. ACM, 2021.

[17] Jianyu Yang, Tianhao Wang, Ninghui Li, Xiang Cheng, and Sen Su.
Answering multi-dimensional range queries under local differential
privacy. Proc. VLDB Endow., 14(3):378–390, 2020.

[18] Ryan McKenna, Raj Kumar Maity, Arya Mazumdar, and Gerome
Miklau. A workload-adaptive mechanism for linear queries under local
differential privacy. Proc. VLDB Endow., 13(11):1905–1918, 2020.

[19] Graham Cormode, Tejas Kulkarni, and Divesh Srivastava. Marginal
release under local differential privacy. In SIGMOD Conference, pages
131–146. ACM, 2018.

[20] Xuebin Ren, Chia-Mu Yu, Weiren Yu, Shusen Yang, Xinyu Yang,
Julie A. McCann, and Philip S. Yu. Lopub: High-dimensional crowd-
sourced data publication with local differential privacy. IEEE Trans. Inf.
Forensics Secur., 13(9):2151–2166, 2018.

[21] Zhikun Zhang, Tianhao Wang, Ninghui Li, Shibo He, and Jiming Chen.
CALM: consistent adaptive local marginal for marginal release under
local differential privacy. In CCS, pages 212–229. ACM, 2018.

[22] Gaoyuan Liu, Peng Tang, Chengyu Hu, Chongshi Jin, and Shanqing
Guo. Multi-dimensional data publishing with local differential privacy.
In Julia Stoyanovich, Jens Teubner, Nikos Mamoulis, Evaggelia Pitoura,
and Jan Mühlig, editors, EDBT, pages 183–194, 2023.

[23] S. L. Warner. Randomised response: a survey technique for eliminating
evasive answer bias. Journal of the American Statistical Association,
60(309):63–69, 1965.

[24] A.G. Thakurta, A.H. Vyrros, U.S. Vaishampayan, G. Kapoor,
J. Freudinger, V.V. Prakash, A. Legendre, and S. Duplinsky. Emoji
frequency detection and deep link frequency, July 11 2017. US Patent
9,705,908.

[25] Zhan Qin, Yin Yang, Ting Yu, Issa Khalil, Xiaokui Xiao, and Kui
Ren. Heavy hitter estimation over set-valued data with local differential
privacy. In CCS, pages 192–203. ACM, 2016.

[26] Yufei Wang and Xiang Cheng. PRISM: prefix-sum based range queries
processing method under local differential privacy. In ICDE, pages 433–
445. IEEE, 2022.

[27] https://github.com/wangyaohua71/privNUD.
[28] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights

update method: a meta-algorithm and applications. Theory Comput.,
8(1):121–164, 2012.

[29] Moritz Hardt, Katrina Ligett, and Frank McSherry. A simple and
practical algorithm for differentially private data release. In NIPS, pages
2348–2356, 2012.

[30] Kaggle. Sf salaries. https://www.kaggle.com/datasets/kaggle/sf-salaries,
2017.

[31] Dheeru Dua and Casey Graf. Machine learning repository.
http://archive.ics.uci.edu/ml.

[32] Kaggle. All lending club loan data.
https://www.kaggle.com/wordsforthewise/lending-club.

[33] Kaggle. Big five personality test.
https://www.kaggle.com/datasets/tunguz/big-five-personality-test.

[34] Matthew Sobek and Steven Ruggles. The ipums project: An update.
Historical Methods: A Journal of Quantitative and Interdisciplinary
History, 32(3):102–110, 1999.

2672

Authorized licensed use limited to: GUANGZHOU UNIVERSITY. Downloaded on April 06,2025 at 01:35:57 UTC from IEEE Xplore.  Restrictions apply. 


