
Lightweight Streaming Graph Partitioning by Fully
Utilizing Knowledge from Local View

Zhigang Wang§†, Zichao Yang§†, Ning Wang§*, Yujie Du¶, Jie Nie§, Zhiqiang Wei§, Yu Gu‡, Ge Yu‡

§Ocean University of China {wangzhigang, yangzichao, wangning8687, niejie, weizhiqiang}@ouc.edu.cn
¶Yantai Eng.&Tech. College {duyujie}@ytetc.edu.cn

‡Northeastern University {guyu, yuge}@mail.neu.edu.cn

Abstract—Data partitioning is the most fundamental procedure
before parallelizing complex analysis on very big graphs. As a
classical NP-complete problem, graph partitioning usually em-
ploys offline or online/streaming heuristics to find approximately
optimal solutions. However, they are either heavyweight in space
and time overheads or suboptimal in quality measured by work-
load balance and the number of cutting edges across partitions,
both of which cannot scale well with the ever-growing demands
of quickly analyzing big graphs. This paper thereby proposes
a new vertex partitioner for better scalability. It preserves the
lightweight advantage of existing streaming heuristics, and more
importantly, fully utilizes the knowledge embedded in the local
view when streaming a vertex, which significantly improves the
quality. We present a sliding window technique to compensate
for the additional memory costs caused by knowledge utilization.
Also, a parallel technique with dependency detection optimization
is designed to further enhance efficiency. Experiments on a
spread of real-world datasets validate that our proposals can
achieve overall success in terms of partitioning quality, memory
consumption, and runtime efficiency.

Index Terms—Streaming Graph Partitioning, Local Streaming
View, Memory Consumption, Parallel Partitioning

I. INTRODUCTION

As one of the most commonly used data structures, graph
can reasonably abstract entities and their relationships in the
real world. In the big data era, the scale of graph data has
grown dramatically and the associated analysis is becoming
more and more complex. The traditional centralized solu-
tion clearly cannot handle such data- and compute-intensive
applications. Now the preferred underlying replacement is
to parallelize graph processing. However, before that, a key
procedure is to partition the large-scale input graph into
multiple subgraphs/partitions.

Nowadays, a prominent graph partitioning solution must sat-
isfy multi-constraints for the efficient subsequent processing.
Typically, graph analysis needs to traverse the topology along
edges to exchange intermediate data and then update vertex
values. In parallel or distributed environments, edges might be
cut across partitions, and then such data as messages are deliv-
ered, yielding additional and expensive communication costs.

This work is supported in part by the National Natural Science Foundation
of China under Grants U22A2068 and 62072083, in part by the Fundamental
Research Funds for the Central Universities under Grant 202042008, and in
part by the National Key Research and Development Program of China under
Grant 2021YFF0704000.

†Co-first authors
*Corresponding author

Thus, the first focus is decreasing the number of cutting edges.
Another constraint is to balance the distribution of workload
measured by the number of vertices and/or edges, so as to
avoid possible waiting costs. Besides, now for most distributed
graph processing systems like Pregel [1], the partitioner as
a built-in component is run together with the subsequent
processing in each analysis job. The partitioning efficiency sig-
nificantly affects the overall performance, especially when real
graphs are frequently updated and/or shared by multi-tenants
with different analysis goals. However, graph partitioning is
NP-Complete due to the goals of cutting-edge reduction and
workload balance (Quality) [2]. The new Efficiency constraint
further exacerbates the challenge of seeking a good solution.

There have been many studies on graph partitioning in
recent years [3], among which there exist two main research
lines: offline partitioning and streaming/online partitioning.
The former utilizes full knowledge of the input graph by
multilevel coarsening and refinement like METIS [4] or it-
erative label propagation like MLP [5]. They refine parti-
tioning results again and again to achieve prominent quality,
but also have significantly expensive time latency and/or
memory consumption. The latter, represented by LDG and
FENNEL [6], [7], are naturally lightweight in efficiency and
memory footprints, since data are scanned only once and just a
local view (including the currently streamed graph record and
the distribution of already streamed and placed vertices) is
stored. However, now the knowledge extracted from the local
view is very limited, which heavily impairs quality.

Hence, a naturally desirable goal for graph partitioning is
to pursue a solution with prominent quality and efficiency.
This paper pursues such a target based on streaming heuristics
by fully utilizing knowledge embedded in the local view,
including neighbor distribution and the topology locality of
the input graph. We are aware that recently some pioneers
have attempted to make a compromise on top of offline and
streaming solutions [8], [9]. However, this paper will show
that there still exist huge improvement spaces for the pure
streaming methods, without any compromise in its lightweight
feature. And our proposal actually can also work as the
replacement for the streaming component in their hybrid
frameworks. While, others make efforts to reduce the runtime
cost of offline methods [5], [10], but the resulting variants still
cannot work as efficiently as streaming competitors, due to the
built-in multilevel or iterative operations. In particular, this

paper focuses on vertex partitioning, since many distributed
graph processing systems provide vertex-centric APIs [11].

We first challenge the conventional wisdom that stream-
ing methods like LDG, can only extract out-neighbor-based
knowledge from the local view. Intuitively, given a newly
arrived vertex v in the streaming, we should assign it to
the partition which closely connects to v. In LDG, the
closeness is scored by analyzing the distribution of only
v’s out-neighbors among partitions. The idea behind it is to
localize the delivery of messages sent along outgoing edges
as many as possible. However, v as a target also receives
messages from its source vertices, which evenly contributes to
communication costs. Such important knowledge is embedded
in in-neighbors. Inspired by this, we compute scores by in- and
out-neighbors together to obtain more knowledge. Note that
the most commonly used adjacency list representation only
contains out-neighbors. We thereby transfer the in-neighbor
analysis into the expectation estimation for already placed
vertices (as sources) in the current partitions, which avoids
expensive preprocessing about adding in-neighbors. Our an-
other observation is that in the initial phase of the streaming
partitioning, the number of already placed vertices is small.
The extracted knowledge is still very limited, even though
in- and out-neighbors are both involved. We thereby utilize
the topology locality of the input graph to quickly make an
assumption about partitioning results. The logically assigned
vertices help to enhance knowledge.

In-neighbor-based expectation estimation can enhance
knowledge and then improve partitioning quality, but it es-
sentially requires each partition Pi to individually count how
much Pi expects every vertex v to be assigned to Pi. That
yields additional O(K|V |) memory consumption when par-
titioning a graph with |V | vertices into K parts. The heavy
memory footprints make it difficult to scale to large graphs,
especially for a big K setting. However, the streaming nature
provides an opportunity for optimization. Since already arrived
and placed vertices before the current v cannot be moved
again, it is not necessary to count the expectation associated
with them. Motivated by this, we separate vertices into X
shards and smoothly slide the counting window over them in
a fine-grained manner, along with the arrival of streaming data.
For each partition, only |V |

X spaces are essentially required and
can be reused when the focused window slides. The additional
space complexity is thereby reduced to O(K|V |

X).
Although the streaming solution has a runtime advantage

compared with offline, we parallelize it to further enhance
efficiency. Our optimization is in shared memory, so that
streaming heuristics can be accurately and timely maintained
in a centralized manner, to provide a reasonable guide for
vertex placement. We particularly parallelize the placement
decisions of multiple graph records/adjacency lists, to resolve
the compute bottleneck. We especially study how to quickly
detect the dependency among parallelized streamed vertices to
reduce the possible conflicts when placing vertices.

The major contributions are summarized below.
• Proposing a new Streaming Partitioner based on in&out-

Neighbors and topology Locality (SPNL), which en-
hances knowledge extracted from local view and then
improves partitioning quality.

• Proposing lightweight optimizations through the fine-
grained sliding window and dependency-reduced paral-
lel techniques, which reduces memory consumption and
improves runtime efficiency.

• Performing extensive experimental studies where SPNL
yields 92% quality improvement compared with stream-
ing partitioners LDG/FENNEL, and 40% even for the
underlying offline METIS; and runs 2X and 15X faster
respectively than LDG and the up-to-date parallel offline
partitioner XtraPuLP.

The remainder of this paper is organized as follows. Sec. II
gives the definition of the graph partitioning problem. Sec. III
overviews related works. Sec. IV presents the detailed design
of our SPNL. Sec. V introduces optimizations of memory con-
sumption and runtime efficiency. Sec. VI shows the evaluation
results. Finally, Sec. VII concludes this paper.

II. PRELIMINARIES

Given a directed graph G=(V,E), V is the set of vertices
and E is the set of directed edges. We assume that vertices
are consecutively numbered to simplify some design in our
proposals. This is reasonable because all of the publicly
available graphs we encountered have done the numbering
work. Let |V | and |E| denote the numbers of vertices and
edges, respectively. Given a directed edge (v, u) ∈ E with two
end-points v and u, v as the source links to u as the target.
The in-neighbors of v are a set of vertices linking to it by
edges, and the out-neighbors are a set of vertices that v has
an edge to link, denoted by N in(v) and Nout(v), respectively.

The objective of graph partitioning is to evenly divide
G into K disjoint subgraphs/partitions Pi = (Vi, Ei) with
reduced connections among them as much as possible, where
i ∈ {1, 2, . . . ,K}, and |Vi| and |Ei| respectively denote
the numbers of vertices and edges in Pi. For any i ̸= j,
we have Pi ∩ Pj = ∅ and P1 ∪ P2 ∪ . . . ∪ PK = G.
The evenness is measured by workload balance, which can
be further categorized into vertex- and edge-based branches.
Eqs. (1) and (2) mathematically show the two respective
metrics. Clearly, δv = 1.0 (δe = 1.0) means that vertices
(edges) are evenly distributed across partitions.

max
i∈[1,K]

{|Vi|} ≤ δv
|V |
K

(1)

max
i∈[1,K]

{|Ei|} ≤ δe
|E|
K

(2)

The specific partitioning logic can also be divided into
vertex- and edge-based variants. The former assigns vertices
together with their adjacent edges across partitions where an
edge (v, u) might be cut if v and u are placed in two different
partitions. Now the connection between any two partitions is
measured by the number of cutting edges, which indicates the
communication costs in subsequent graph processing jobs. The

latter focuses on assigning edges but an end-point vertex will
be replicated in multi partitions if its incoming or outgoing
edges are distributed across different partitions. Here the
connection metric is the total number of replicators, which
dominates the communication cost.

Generally, a myriad of graph algorithms are programmed
in a vertex-centric manner, with easily used APIs provided
by existing distributed systems [11] like the early pioneer
Pregel [1]. We then focus on the vertex partitioning. Also,
these systems typically plug the partitioner as a necessary
preprocessing step for each job. That means a graph will
be partitioned multiple times, especially when end-users have
very different analysis goals (like running PageRank and
Shortest Path computations in two jobs but on the same graph).
The partitioning time is a portion of the total runtime and
should be reduced if possible.

Overall, this paper focuses on scalable vertex-based graph
partitioning with high quality (reducing the number of cutting
edges and making δv , or δe close to 1.0) and efficiency.
Secs. IV and V give our new streaming solutions. In particular,
Table I summarizes important symbols used throughout this
paper.

TABLE I
DEFINITIONS OF IMPORTANT SYMBOLS

Svmbol Definition
Pi The i-th partition
|V |/|E| The number of vertices/edges
N in(v) A set of vertices linking to v by edges
Nout(v) A set of vertices that v has an edge to link
δv/δe The load balancing factors in terms of vertices/edges

wt(i, v)
The real-time remaining workload capacity of Pi when
partitioning vertex v at time t

λ
The weight used to balance the importance of in-neighbors
and out-neighbors

Γt
i(v)

A metric measuring how much Pi expects v to be assigned
into its vertex set Vi at time t

pt/lt lt physically/logically allocated at time t

V pt
i /V lt

i
The set of vertices physically/logically allocated into Pi at
time t

X
The number of X shards each partition used in the sliding
window technique to record the expectation of |V |

|X| vertices

RCT
A hash-based Reversed-Counting-Table for vertex v to
detect the dependency associated with u ∈ Nout(v)

|D| The total number of cutting edges
ECR The Edge Cut Ratio evaluated by |D|

|E|
PT Time spent on partitioning
MC Memory consumption during the entire partitioning process

III. RELATED WORKS

This section begins with an introduction to two important
research branches: offline and streaming, and then gives a
general overview of parallel optimization techniques.

A. Offline graph partitioning

There is a rich literature on offline graph partitioning
where the input graph is scanned multiple times to gradually
refine the quality. The most well-known representative is to

first progressively coarsen the input graph using maximum
matching clustering schemes, and then partition the coarsest
graph [12] and project back the division to the original
graph. METIS [4] and Scotch [13] belong to this category.
MLP [5] replaces the costly maximum matching with label
propagation-based connected component computation. Some
methods further rely entirely on iterative label propagation
for parallel partitioning [14], [15]. Slota et al. extend this
idea with multiple constraints and multiple objectives [16].
Besides, Deng et al. explore its advantage when partitioning
heterogeneous graphs [17]. These offline methods can scale
to moderate graphs with relatively good quality. Among them,
METIS is usually regarded as the quality benchmark. However,
they are runtime inefficient and memory consuming, due to
multiple data scans and the storage of immediate results.

B. Streaming/online graph partitioning

Some researchers consider the arrival of graph data to be
streaming. As vertices arrive, we can determine the location
of new arrivals by computing the distribution of the already
placed data. This one-pass data-scanning design enables it
to scale to very large-scale graphs, although the quality is
reduced because of the lack of a global view. LDG [6] and
FENNEL [7] are two representatives. The quality can be
further improved by providing the entire or partial output of
a previous execution to the current one, termed as fully or
partially re-streaming [18], [19]. Recent works extends the
streaming design to edge partitioning, especially for power-
law graphs [20]. Compared with vertex partitioning where a
whole adjacency list is available, now the knowledge learned
from an edge is very limited. Researchers thereby focus on
quality improvement by multi-streaming [21], [22], buffering
edges [23], and establishing a hybrid solution based on offline
and online schemes [24]–[27]. Other researchers also explore
the impact of a hybrid design for vertex partitioning [8],
[9]. Clearly, our proposal can work as a plugged underlying
streaming component in these works.

C. Parallel graph partitioning

With the increasing size of graph data, it is inevitable to
implement partitioning in parallel or distributed environments.

Offline: The most common approach is to parallelize existing
partitioners, for example, ParMETIS [28] of METIS and PT-
Scotch [29] of Scotch. Holtgrewe et al. and Akhremtsev
et al. also devote efforts into parallelizing such multi-level
solutions [30], [31]. Nevertheless, the efficiency improvement
is still limited. Spinner [32] and JA-BE-JA [15] thereby solely
use iterative label propagation for efficiency. XtraPuLP [10]
also follows this idea and parallelizes it in shared and dis-
tributed memory settings. It can easily scale to over 8K ma-
chines to partition a trillion-edges graph in minutes. However,
the excessive hardware resource requirement still makes it
cost-inefficient, due to iterative label propagation.

Online/streaming: Previously, Shi et al. parallelize the place-
ment decisions on a distributed memory platform and devote

efforts into reducing network latency [33]. While, our parallel
optimization works in shared memory without this shortcom-
ing, since currently a regular multi-cores service has strong
enough computing power and storage capacity. Recently, Hua
et al. split the streaming into massive parts for independently
parallel edge partitioning [34] where each requires inefficient
multiple rounds of computations to break the dependency.
Faraj et al. and Wang et al. also focus on efficiency in terms of
parallelism [35] and topology-locality utilization [36]. How-
ever, as reported, their partitioning quality generally heavily
degrades, compared with centralized LDG/FENNEL.

IV. SPNL: STREAMING GRAPH PARTITIONING WITH
ENHANCED HEURISTICS

This section first introduces the existing linear deterministic
greedy heuristic used in LDG as a basis, and then proposes
our enhanced heuristics by considering in-out neighbors and
topology locality.

A. The basic linear deterministic greedy heuristic

Although offline partitioners can output high-quality parti-
tions, they have a significant increase in runtime costs and
memory consumption for large-scale graphs. For better scala-
bility, streaming partitioners have received extensive attention.
The classical representative LDG uses a Linear Deterministic
Greedy heuristic, which tries to place adjacent vertices in
the same partition to reduce the number of cutting edges,
while satisfying the capacity constraint of each partition for
workload balance. The heuristic function of LDG is given in
Eq. 3 to select a reasonable partition id pid for the currently
arrived vertex v. Here

∣∣V pt
i ∩Nout(v)

∣∣ indicates till now, at
the time instance t, how many out-neighbors of v have already
arrived and placed into the i-th partition Pi. wt(i, v) is the
real-time remaining workload capacity of Pi, which works as
a penalty function to balance the workload. We can use |Vi|
or |Ei| to support vertex-based or edge-based balance.

pid = arg max
i∈[1,K]

{∣∣V pt
i ∩Nout(v)

∣∣ · wt(i, v)
}

(3)

Fig. 1 demonstrates how Eq. 3 works in LDG with K = 3.
We assumed that vertices numbered from 1 to 6 have been
serially streamed and placed by V1 = {3, 5}, V2 = {1, 2}, and
V3 = {4, 6}. For the currently arrived vertex 7 with N(7) =
{6, 9, 10}, based on Eq. 3, the distribution score associated
with P1, P2 and P3 is (0, 0, 1). Since now all partitions have
the same remaining capacity about vertices, vertex 7 is finally
assigned to P3 and cannot be moved again.

B. A heuristic with runtime in-out neighbors

The streaming LDG has a significant improvement in effi-
ciency since data is scanned only once. However, it cannot
reduce the number of cutting edges very well, and hence
affects the quality. The reasons are twofolds. The first is that
if the out-neighbors of the currently arrived vertex v have
been roughly evenly placed across partitions, the score is then
mainly dominated by the capacity. In another word, we assign

Fig. 1. Illustration of LDG

v without any optimization about cutting edge reduction. The
second is that at the initial streaming stage, all partitions are
roughly empty. The nearly equal score values enforce LDG to
blindly randomly assign v.

In fact, the two reasons are caused by the limited knowledge
extracted from the Local View consisting of the currently
arrived vertex and the distribution of already placed vertices.
Utilizing only out-neighbors increases the probability of ig-
noring cutting edge optimization. That motivates us to enrich
knowledge extracted from the local view. Here, we propose
the new Streaming Partitioner by additionally considering in-
Neighbors (SPN). The idea behind it is that a vertex v not only
sends messages along outgoing edges to its targets, but also
receives messages along incoming edges from in-neighbors.
Assigning v to the partition, to which a maximal number
of its out-neighbors have been placed, of course can reduce
the number of cutting edges (outgoing edges) linking from
v. However, assigning it to the partition with the maximal
number of its in-neighbors, can also achieve the goal of
cutting edge reduction but now they are incoming edges from
v (or the outgoing edges from these in-neighbors). Clearly,
the latter can equivalently optimize communication costs, as
demonstrated in the top in Figure 2. Thus, taking both in-
and out-neighbors into account can decrease the probability
of encountering the two scenarios/reasons explained above.
In this way, the partitioner will make the placement decision
more smartly. Eq. 4 mathematically shows this new design,
where the parameter λ is used to balance the importance of
in-neighbors and out-neighbors. Users can specify it manually.

Fig. 2. Illustration of SPN

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.8 1.0

E
C
R

λ

K=2

K=16

K=32

(a) eu2015

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0

E
C
R

λ

K=2

K=16

K=32

(b) indo2004

Fig. 3. Evaluating the impact of λ

pid = arg max
i∈[1, K]{(

λ|V pt
i ∩Nout(v)|+ (1− λ)|V pt

i ∩N in(v)|
)
· wt(i, v)

}
(4)

Note that for a directed graph, in-neighbors are not available
in the adjacency list. However, we can partially infer this
information from out-neighbors of already placed vertices in
the local view. At the time instance t, we now use a lookup
table Γt

i with the size of |V |, to count how many times an
arbitrary vertex x ∈ V exists in the out-neighbors of vertices
already maintained by Pi. Assume that now v is arriving and
u has already been placed into Pi. The counting operation can
be performed by traversing out-neighbors of u when placing
it into Pi. If u is one of the in-neighbors of v, then (u, v) ∈ E
and the counter associated with v increases by 1. Γt

i(v) implies
that how much Pi expects v to be assigned into its Vi, and if
yes, then the message from u to v can be quickly delivered
in local. In this way, we can estimate |V pt

i ∩N in(v)| in Eq. 4
by traversing the out-neighbors of v’s out-neighbors and then
summing up the corresponding counts. We call this as runtime
in-out neighbor estimation since we do not directly know v’s
in-neighbors. Eq. 4 is thereby re-written as Eq. 5.

pid = arg max
i∈[1, K]{(

λ|V pt
i ∩Nout(v)|+ (1− λ)

∑
u∈Nout(v)

Γt
i(u)

)
· wt(i, v)

}
(5)

Note that SPN degrades to LDG when λ = 1, because the
impact of in-neighbors is completely ignored. On the other
hand, in-neighbors dominate the cutting edge reduction if λ =
0. To seek an optimal setting, we run SPN by manually varying
λ on many real graphs like eu2015 and indo2004 (described
in Table II in Sec. VI-A). Let ECR be the ratio of the number
of cutting edges to |E|. Our goal is to reduce this metric.
As shown in Figure 3, the two extreme settings both yield a
suboptimal result. That makes sense because solely utilizing
in-neighbors or out-neighbors will definitely encounter the two
scenarios explained at the beginning of this subsection. We
thereby use λ = 0.5 by default to equally weight contributions
from the two kinds of neighbors.

Figure 2 demonstrates how SPN works using the same
example in Figure 1. By Eq. 5, it is known that the out-
neighbors based score is (0,0,1) and the in-neighbors based
expectation estimation score is (0,1,1). Vertex 7 is finally
assigned to P3 since the combined score is (0,1,2)1.

Algorithm 1 gives the procedures for processing a newly
arrived vertex v with SPN. After deciding the placement, we
need to update V pt

pid, Ept
pid, wt

pid, and Γt
pid associated with the

selected partition. In Line 4, C is the capacity constraint of
each partition, which is computed by δ · |G|

K with the user-given
balance threshold. |G| and |P t

i | are respectively equal to |V |
and |V pt

i | for vertex-based balance, and |E| and |Ept
i | for edge-

based balance. wt clearly indicates the remaining capacity.

Algorithm 1 Assigning a vertex v using SPN

Input: v, Nout(v), K, Vpt = {V pt
1 , V pt

2 , ..., V pt
K },

𭟋t = {Γt
1,Γ

t
2, ...,Γ

t
K}

Output: the partition id pid
1: Compute pid by Eq. 5
2: V pt

pid = V pt
pid ∪ {v}

3: Ept
pid = Ept

pid ∪Nout(v)

4: Update wt
pid = 1− |P t

i |
C

5: for u ∈ Nout(v) do
6: Increase Γpid(u)

t by 1
7: end for
8: return pid

C. A heuristic utilizing topology locality

Adding the runtime in-neighbor expectation indeed can
enrich knowledge, however, at the initial streaming stage, the
effectiveness is still marginal because now few vertices are
placed. This is because SPN (also LDG) only cares about
the physically assigned neighboring vertices and ignores the
temporarily unassigned ones. As shown in Figure 2, for vertex
7, only the neighboring vertex 6 is assigned and counted,
and others like 9 and 10 cannot provide any useful heuris-
tic information. Otherwise, their assignment as prior-known
knowledge can further boost the accuracy of assigning 7.

In this section, we design a two-step variant of SPN with an
additional but very lightweight logical pre-assignment for all
vertices. Then at the subsequently physically assignment step,
such pre-assignments V lt

i as prior-knowledge can be used, as
shown in Eq. 6. Here we do not directly use V pt

i ∪ V lt
i to

compute the size of the intersection set with Nout(v), because
the logical assignment might not be accurate. Instead, we
separately compute the two intersection sets and weight them
with another parameter η, resembling λ. Different from λ with
a fixed value, ηti as a decay factor gradually decreases with
the elapsed time when more neighboring vertices have already
been physically placed, since we believe the latter a little bit
more. This paper typically sets ηti = max{0, |V lt

i |−|V pt
i |

|V lt
i | },

and more interesting yet effective settings will be explored as

1For better understanding, here we remove the weight parameter λ.

future work. Note that V lt
i also dynamically changes. v ∈ V lt

i

will be immediately removed once it is physically assigned.

pid = arg max
i∈[1, K]

{
wt(i, v) ·

((
1− λ

) ∑
u∈Nout(v)

Γt
i(u)+

λ
(
(1− ηti)|(V

pt
i) ∩Nout(v)|+ ηti |(V lt

i) ∩Nout(v)|
))}

(6)
Last but not least, we need to carefully select the logical

pre-assignment policy. It should (1) be lightweight with neg-
ligible memory consumption and runtime latency for better
scalability; and (2) capture the topology locality for better
accuracy, i.e., v ∈ V lt

i will be indeed physically added into
Vi in high probability. This paper employs a Range method
where vertices are consecutively distributed among partitions.
This can be efficiently done by constructing a lookup table,
where each partition only records the minimal and the maximal
vertex ids since all vertices are numbered. The specific range
size is decided by the balance constraint. We evenly range-
partition vertices if δv is primarily concerned; or split the input
graph file to infer the boundary ids if δe is used, since edges
dominate the storage size. Such a table can be quickly formed
with O(2K) space complexity, satisfying the first constraint.
For the second, in fact our previous work has already validated
that a large amount of graphs are crawled by BFS, which
naturally embeds the topology locality into the vertex storage
order in the disk file2 and can be preserved by the Range
policy. We thereby call the variant of SPN with enhanced
topology Locality as SPNL.

Besides locality originally provided by input, SPNL can
also enhance the accuracy of logical pre-assignment by itself.
By Eq. 6, we know a vertex v will tend to be physically
assigned into Pi, if most of its out-neighboring vertices like
u are logically assumed to be in V lt

i . That in turn increases
the expectation counter Γi(u) if v indeed belongs to Vi.
Thus, when many vertices are attracted by the assumed u,
the probability of placing u into Vi will inevitably increase.

Figure 4 finally demonstrates SPNL. Using the vertex-based
balance constraint, the total 15 vertices are evenly logically
pre-assigned across 3 partitions. When vertex 7 arrives, we
compute the score contributed by not only already physically
placed in-neighbors 2 and 6, and out-neighbor 6, but also
logically assigned out-neighbors 9 and 10. The final score is
then (0,3,2)3 and hence 7 is placed in V2. After that, 7 is
removed from V lt

2 since it has been physically assigned.
Compared with SPN in Algorithm 1, the only difference

is that SPNL requires a logical lookup table and dynamically
updates it by removing already physically placed vertices.

V. LIGHTWEIGHT STREAMING OPTIMIZATIONS

This section introduces our optimizations on memory con-
sumption and parallel efficiency. They make SPN and SPNL

2Please refer to Table 1 in Ref. [36].
3For better understanding, here we remove weight parameters λ and η.

P1 P3P2
V1
l

V2
l

V3
l

Fig. 4. Illustration of SPNL

work in a lightweight and scalable manner.

A. Optimizing memory footprints with sliding window

Compared with LDG, our SPN and SPNL can output
partitions with a lower number of cutting edges, with enhanced
knowledge from in-out neighbors and topology locality, but at
expense of consuming more memory resources. In LDG, we
only need to allocate memory resources for the local view.
Let max d stand for the maximal out-degree in G. The local
view includes an adjacency list with the length of max d at
most, a K-dimensional score vector, and the partitioning route
table that records the placements of all |V | vertices. Its space
complexity is then O(|V |+K +max d). For SPN, it requires
to count the expectation on all vertices for each partition.
The total memory consumption then significantly increases to
O((K + 1)|V | +K +max d). For SPNL, the additional cost
is caused by the logically pre-assigned route table, yielding
the total O((K + 1)|V | + 3K + max d) complexity. Clearly,
expectation estimation incurs the most significant memory
consumption for our proposals, which poses great scalability
challenges for very large-scale graphs. This subsection thereby
focuses on optimizing the additional O(K|V |) memory costs.

Recall that the already placed vertices will not be moved
since streaming partitioning scans data only once. Then at
the time instance t, we actually do not need to count the
expectation for vertices arrived before t, since these counts
will not be used forever. That clearly saves the compute and
storage resources. By this straightforward optimization, for
each partition Pi, we evenly divide all vertices in Γi into
X shards, denoted by Si1, Si2, ..., SiX . Since vertices are
consecutively numbered and serially streamed, we can safely
abandon a shard Sij if and only if all vertices within it
have been physically assigned. The total memory consumption
thereby gradually decreases. However, at the very beginning,
all X shards should be preserved and the peak consumption
is still O(K|V |).

Another observation is that benefitting from the topology
locality, the currently arrived vertex usually has edges linking
to neighbors numbered roughly around it. This motivates us
to further slide a focus window from one shard to another
along with the streaming operation, and only vertices in
the window are counted as the associated expectation. Then
different shards can share the memory for counters, to reduce
the peak consumption to O(K|V |

X).

X is a key parameter in the sliding window technique.
A large X of course can significantly reduce the memory
cost, but some useful counts might be missed. Suppose the
currently arrived vertex v falls into Sxj for the j-th shard of
all x ∈ [1,K] partitions. The distribution of its out-neighbors
u ∈ Nout(v) can be categorized into three cases: (1) u rightly
falls into the same shard and then can be accurately counted
about its expectation; (2) the belonging shard has been slid
where the counting loss can be ignored since vertices in that
shard have already been placed; (3) u belongs to a shard
which will be focused on in future, then the loss brings a
negative impact on placing u. In Sec.VI-B, we empirically give
a recommendation about setting the value of X and validate
that the recommended value can strike a good balance between
memory reduction and partitioning quality.

The third case also tells us that a coarse-grained shard-by-
shard implementation leads to a sharp sliding, which incurs
huge accuracy loss on expectation, especially for boundary
vertices. We thereby implement the sliding window technique
in a fine-grained manner. The sliding unit is a vertex, rather
than a shard. When a new vertex arrives, we remove the oldest
vertex in the window and extend the boundary to the next
vertex. Since vertices are consecutively numbered and serially
streamed, this can be logically implemented by rotating over
a fixed-size array by carefully computing the location index.
The fine-grained sliding operation can smoothly embrace the
expectation estimation of boundary vertices and still have
O(K|V |

X) memory requirements.

Fig. 5. Memory optimization by sliding window

Figure 5 demonstrates our fine-grained sliding window tech-
nique with the settings of X = K = 2 and |V | = 4. Assume
that vertices 1, 2, and 3 are serially respectively assigned into
P1 and P2. Since the shard size is ⌈ |V |

X ⌉ = 2, each partition Pi

only maintains the expectation for two vertices in Γi. At the
very beginning, vertices 1 and 2 are covered by the window.
Then Γ1(2) and Γ2(1) are both increased by 1, because of the
edges (1, 2) and (2, 1). However, neither Γ1(4) nor Γ2(3) is
changed since 3 and 4 are excluded from the window, even
though there exist edges (1, 4) and (2, 3). When the new vertex
3 arrives, we know the window must be slid to the next one as
its upper bound vertex id is less than 3. Similarly, neither Γ1(1)
nor Γ1(4) is updated. This is because 1 have been removed and
4 has not been involved. These missing updates on Γ except
Γ1(1) clearly generate a negative impact on the quality.

B. Optimizing efficiency with parallel partitioning

Although the streaming partitioner has native efficiency
advantages due to the single-pass data scan, the scalability
is still poor when processing large graphs. This subsection
thereby introduces our parallel efforts.

The workload of a streaming partitioner mainly includes
two parts: loading and streaming data from the input disk
file, and computing the distribution score for each vertex.
Our solution only parallelizes the latter. The reasons for this
choice are twofolds. Firstly, our tests reveal that the hot
part is score computation, instead of the sequential reads
when loading data. Secondly, our sliding window technique
essentially requires vertices to be streamed in their numbered
order, to effectively count expectations as much as possible,
which can be easily guaranteed in the centralized scenario.

Our data-parallel implementation constructs a producer-
consumer queue to buffer streamed data. Many threads concur-
rently take adjacency lists from the buffer and then compute
the scores. However, it is most likely that the concurrently
processed vertices are also adjacent to each other. In central-
ized scenarios, they are streamed one by one and then the
former can guide the placement of the latter. But in parallel
scenarios, such heuristic information will be ignored if we
assign them at the same time. That significantly decreases the
efforts of reducing the cutting edge number and hence impairs
the quality, especially when the parallelism is large.

To alleviate the quality degradation, we enforce these con-
current vertices to actively detect the dependency conflicts.
The assignment of a vertex with heavy conflict can be tem-
porarily delayed so that it can fully utilize the heuristic knowl-
edge from its in-out neighbors. However, conflict detection can
be expensive, if, for example, we compute the intersection set
of neighbors for any pair of vertices. That possibly can offset
the parallel benefit.

Fig. 6. Dependency detection optimization in parallel computations

Here we design a hash-based reversed-counting-table (RCT)
to quickly detect dependency. For all concurrently processed
vertices, RCT stores a series of corresponding pairs, each of
which consists of the vertex id and a dependency counter.
Given a vertex v, we can count the dependency associated
with u ∈ Nout(v) by taking the counter in RCT with O(1)
time complexity. The counting operation is performed when its
out-neighbors are traversed to compute the distribution score.
No additional runtime cost is incurred. Once the u’s score is

 0
 2
 4
 6
 8

 10
 12
 14
 16

1 32 2x10
3

10
4

10
6

10
8

M
C

(G
B

)

X

K=2

K=16

K=32

(a) MC

0.00

0.04

0.08

0.12

0.16

0.20

1 32 2x10
3
10
4
10
6
10
8

E
C
R

X

K=2

K=16

K=32

(b) ECR

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 32 2x10
3
10
4
10
6
10
8

δ
v

X

K=2 K=16 K=32

(c) δv

 0

 100

 200

 300

 400

 500

1 32 2x10
3

10
4

10
6

10
8

P
T

(s
)

X

K=2 K=16 K=32

(d) PT

Fig. 7. Impact of different numbers of shards (X) on all metrics (SPNL, web2001)

computed, it can decide whether or not to delay the assignment
by reading its dependency counter. If not, u will be removed
from RCT so that the latter can store the new vertex taken
from the buffer. The size of RCT is then fixed as ϵM , where
M stands for the parallelism granularity. ϵ indicates at most
how many vertices can be temporarily stored by a thread due
to heavy dependency conflicts. We enlarge RCT by the factor
of ϵ because the thread will continuously take new data from
the buffer if the current vertex is delayed to be assigned.

Figure 6 shows the dependency detection with the settings
of M = 4 and ϵ = 2 as an example. Vertices 1-4 are con-
currently processed. 1 heavily depends on others and hence,
the latter are freely assigned but the former is delayed. After
assigning vertices 2-4, the dependency counter associated with
1 decreases to 0 and then we can re-compute its distribution
score. Now, it can fully utilize the heuristic information from
its in-neighbors in Γ1. By default, we use the average of non-
zero counters as the dependency threshold.

VI. EXPERIMENTS

This section shows experiment studies by comparing our
SPNL with well-known streaming and offline partitioners.

A. Benchmarks and Setups

Experimental Environments and Datasets. The experi-
ments are run on a Dell Precision 7920 Server with two
Intel XEON Silver 4216 Processors (32 cores and 64 threads,
2.1GHz), 64GB DDR4 ECC RAM, and 4TB SATA AG-
Enterprise Hard Drive (7,200RPM). We conduct an overall
performance analysis on eight real graph datasets ranging from
social networks to web graphs, whose specific information is
shown in Table II.

TABLE II
DESCRIPTION OF GRAPH DATASETS

Graphs |V| |E| Size
stanford 685,230 7,605,339 58.0MB
uk2005 100,000 3,050,615 17.0MB
eu2015 6,650,532 171,736,545 1.4GB
indo2004 7,414,866 195,418,438 1.5GB
uk2002 18,520,486 298,113,762 2.5GB
web2001 118,142,155 1,019,903,190 9.6GB
sk2005 50,636,154 1,949,412,601 16.0GB
uk2007 108,563,230 3,929,837,236 34.0GB

Benchmark Partitioners. We use SPN to stand for our
basic partitioner based on only in-out neighbors, and SPNL
for the advanced one when topology locality is additionally
utilized. The competitors include classic streaming solutions
LDG [6] and FENNEL [7], the offline METIS [4] with
preferred quality, and the up-to-date offline XtraPuLP [10]
with prominent scalability. LDG, FENNEL, and METIS are
all centralized and used to validate the quality improvement,
while XtraPuLP is used as a parallel competitor in shared
memory. We implement LDG, FENNEL, and our proposals by
own in Java, and directly use the open-source implementations
of offline counterparts written in C++. We are aware that
recently there exist many edge partitioning works. However,
vertex partitioning and edge partitioning are not comparable
because they have very different goals and hence heuristic
optimizations. As reported in Ref. [10] and Ref. [37], we
cannot perform an end-to-end comparison, no matter re-
assigning edges (converting edge cuts to vertex cuts) or
vertices (converting vertex cuts to edge cuts). We thereby do
not analyze the performance of these vertex partitioning works.

Evaluation Metrics. We focus on both partitioning quality
and efficiency. The quality is evaluated by two aspects: the
Edge Cut Ratio (ECR) evaluated by |D|

|E| where |D| is the total
number of cutting edges; and the load balancing factors in
terms of vertices and edges, denoted by δv and δe respectively
as shown in Eqs. (1) and (2). For ECR, the lower, the better;
and for δv and δe, the closer δv and δe it is to 1.0, the better.
The runtime efficiency is defined as Partitioning Time (PT)
starting from the point loading the first adjacency list to the
point outputting the vertex-assignment route table. Besides,
the Memory Consumption (MC) is also tested to validate
the effectiveness of our sliding window design. Note that we
primarily care about the vertex-based balance constraint, but
both δv and δe metrics are reported for a more complete
comparative analysis. For multi-constraint XtraPuLP, we set
δv=1.0 and δe=50.0 to enforce vertex balance.

Below, we first test the effectiveness of sliding window
in Sec. VI-B to select a proper shard parameter; and then
compare our proposals against existing streaming and offline
partitioners respectively in Sec. VI-C and Sec. VI-D. In
addition, the symbol ‘F’ indicates an unsuccessful due to the
“out of memory” error.

TABLE III
THE OVERALL PERFORMANCE WHEN COMPARING SPN AND SPNL WITH STREAMING PARTITIONERS (K=32, PT : SECONDS).

Graphs LDG FENNEL SPN SPNL
ECR δv δe PT ECR δv δe PT ECR δv δe PT ECR δv δe PT

stanford 0.37 1.2 3.2 2.0 0.41 1.1 2.1 2.0 0.30 1.12 2.42 2.1 0.18 1.0 3.1 2.1
uk2005 0.49 1.2 2.1 0.7 0.54 1.1 2.1 0.7 0.39 1.2 2.4 0.8 0.32 1.1 2.7 0.8
eu2015 0.29 1.4 18.6 25.7 0.30 1.1 18.5 27.0 0.23 1.2 19.4 31.0 0.17 1.1 18.4 31.9

indo2004 0.31 1.0 9.0 28.8 0.32 1.1 8.6 30.7 0.19 1.0 8.5 33.2 0.04 1.0 8.6 33.3
uk2002 0.41 1.0 1.2 58.5 0.43 1.0 1.1 58.0 0.25 1.0 1.2 63.7 0.05 1.0 1.4 69.6

web2001 0.43 1.0 1.1 295.2 0.47 1.0 1.1 303.1 0.25 1.0 1.2 337.6 0.06 1.0 1.3 344.0
sk2005 0.43 1.1 1.4 326.8 0.47 1.1 1.3 331.6 0.26 1.0 1.4 348.8 0.10 1.0 1.6 369.7
uk2007 0.36 1.0 2.4 685.5 0.38 1.1 2.2 707.8 0.24 1.0 2.4 815.6 0.03 1.0 2.1 875.6

0.0

0.2

0.4

0.6

2 4 8 16 32

E
C

R

Number of Parts

LDG

FENNEL

SPN

SPNL

(a) ECR

0.0

0.5

1.0

1.5

2.0

2 4 8 16 32

δ
v

Number of Parts

LDG

FENNEL

SPN

SPNL

(b) δv

0.0

0.5

1.0

1.5

2.0

2 4 8 16 32

δ
e

Number of Parts

LDG

FENNEL

SPN

SPNL

(c) δe

 0

 20

 40

 60

 80

 100

2 4 8 16 32

P
T

(s
)

Number of Parts

LDG

FENNEL

SPN

SPNL

(d) PT

Fig. 8. Impact of K on all metrics when compared with streaming partitioners (uk2002)

0.0

0.1

0.2

0.3

0.4

0.5

2 4 8 16 32

E
C

R

Number of Parts

LDG

FENNEL

SPN

SPNL

(a) ECR

0.0

0.5

1.0

1.5

2.0

2 4 8 16 32

δ
v

Number of Parts

LDG

FENNEL

SPN

SPNL

(b) δv

 0

 2

 4

 6

 8

 10

2 4 8 16 32

δ
e

Number of Parts

LDG

FENNEL

SPN

SPNL

(c) δe

 0

 10

 20

 30

 40

 50

2 4 8 16 32

P
T

(s
)

Number of Parts

LDG

FENNEL

SPN

SPNL

(d) PT

Fig. 9. Impact of K on all metrics when compared with streaming partitioners (indo2004)

B. Effectiveness of sliding window

As analyzed in Sec. V-A, the memory consumption of
our proposed SPN and SPNL is sensitive to the number of
shards X . The group of experiments thereby test its impact
on MC and other metrics by manually enumerating X values,
so that we can select a proper setting for the following
tests. Without loss of generality, we run SPNL over web2001
as a test case, and the similar results can be observed on
other combination cases. As shown in Figure 7(a), MC of
course significantly decreases when increasing X , because
the shard/window size is inversely proportional to X , and
with sliding window, we need to allocate spaces for only one
shard, instead of all vertices, for each partition. But the benefit
dramatically drops when X becomes further large, as storing
expectation estimation now does not dominate the memory
consumption. On the other hand, Figure 7(b) tells us that an
extremely large X yields a clear degradation about ECR. This
is because a newly arrived vertex can only update and see
expectation counts for vertices within the window; a small
window clearly reduces the probability of looking up useful

counts and hence increases ECR. Differently, Figure 7(c) and
(d) reveal that δv (also δe) and PT always keep steady. The
reason is that capacity estimation and expectation lookup (with
O(1) time complexity) are both independent of the length of
the shard/window size. Figure 7 also shows that these metrics
are not sensitive to the number of partitions, i.e., K.

Overall, a quite large range of X can improve the perfor-
mance on MC without a negative impact on other metrics.
Thus, for both SPN and SPNL in the following experiments,
we empirically give X = min{αK, |V |

βK }, parameterized by
α= 4 and β= 104 by default. Taking web2001 with K=32 as
an example, the computed X is 128. Table IV then reports
the memory consumption (MC) of streaming and offline
partitioners. Because METIS and XtraPuLP need to load the
whole input graph into memory for complex analysis, the two
offline parritioners consume memory resources at least linearly
related to the number of edges [22]. That yields a significant
increase on MC, compared with streaming partitioners LDG
and FENNEL. For our SPNL, its MC value is up to 14.53GB
at the extreme case where X=1. However, by decreasing X

down to 128, the MC value is comparable to existing streaming
partitioners, and the negative impact on quality (like ECR) is
negligible.

TABLE IV
SPACE COMPLEXITY EVALUATION

Methods MC(GB) ECR Space Complexity
LDG 0.44 0.4318 O(|V |+K +max d)
FENNEL 0.44 0.4733 O(|V |+K +max d)
METIS ≥ 3.80 0.1027 ≥ O(|E|) [22]
XtraPuLP ≥ 3.80 0.2742 ≥ O(|E|) [22]
SPNL(X=1) 14.53 0.0620

O(|V |+ 3K +
K|V |
X

+max d)SPNL(X=128) 0.55 0.0623

C. Compared with streaming partitioners

Now we compare our SPN and SPNL with streaming
partitioners LDG and FENNEL. Table III summarizes the
overall performance with K = 32. SPN and SPNL generally
outperform their counterparts in quality (with lower ECR and
comparable δv and δe), but have slight runtime latency because
of computing complex heuristics.

In particular, SPN reduces ECR by at most 47% compared
to traditional LDG and FENNEL (from 19%), since the former
considers the distribution of not only out-neighbors but also
in-neighbors. Adding topology locality creates another gap
between SPN and SPNL. The improvement thereby increases
to 92% (from 35%).

Another observation is that although all partitioners perform
well in δv , the distribution of edges is very skewed, since
vertices usually have scale-free degrees. However, all of them
can support for δe if necessary, by measuring capacity with the
number of edges. Here we omit the report due to the length
limitation of the manuscript.

Figure 8 and Figure 9 further plots all metrics as a function
of K, using uk2002 and indo2004 as an example graph.
All partitioners work well in δv and δe. But ECR and PT
inevitably increase when K becomes large, because finding a
proper partition for a given vertex is more difficult and more
time-consuming score computations are required. Generally,
all these streaming partitioners have prominent scalability in
terms of quality and efficiency.

D. Compared with offline partitioners

Next, we focus on comparing our proposals with complex
offline partitioners METIS and XtraPuLP. Since SPNL con-
sistently beats SPN in all metrics, here we only report data
associated with the former for brevity. Recall that both SPNL
and XtraPuLP can be run in parallel in shared memory. We
then explore their features in centralized and parallel (with
manually tested optimal granularity) settings.

Table V reports our experiment results where all involved
partitioners have different advantages. In the centralized set-
ting, we generally observe that METIS has the best quality in a
few cases but consumes large memory and compute resources;
XtraPuLP runs faster than METIS at expense of high ECR; our

SPNL is comparable to or even better than METIS in ECR in all
cases, and always has the most prominent performance in PT,
even though the other two are written in more efficient C++.
In particular, SPNL reduces ECR up to 40%, compared with
METIS, and runs 20X faster at most than it. For XtraPuLP,
the two factors are 91% and 7X, respectively.

Note that we fail to run METIS on two large graphs sk2005
and uk2007 because of memory errors. The reason is that the
multilevel coarsening operations generate a large amount of
intermediate data and hence the memory is quickly exhausted.
XtraPuLP alleviates this bottleneck by label propagation, but
still fails on the largest graph uk2007, since loading the whole
graph and storing labels pose great challenges for limited
memory resources. Instead, benefitting from the small size of
the local view and the sliding window optimization, our SPNL
has good scalability.

Besides, the parallel variants of SPNL and XtraPuLP can
respectively decrease the runtime by 63% and 26% at most,
compared with their centralized tests. Because of the parallel
optimization in Sec. V-B, now the speedup of SPNL compared
against XtraPuLP is up to roughly 15, which is larger than
the factor 7 in centralized. Also, the parallel SPNL can run
2 times at most faster than the centralized LDG shown in
Table III. However, the read/write conflicts caused by multiple
threads make it difficult to accurately place a vertex into the
right partition. XtraPuLP thereby generates up to 47% quality
degradation in ECR. But for SPNL, the dependency-reduced
optimization largely reduces the conflicting probability, which
narrows the maximal of the corresponding degradation to 6%
(2% on average).

Resembling the comparison against streaming counterparts,
now we explore features when varying K, using indo2004 and
eu2015. We can see the similar variation with that in Figure 10
and Figure 11 for all metrics except δe. δe roughly nearly in-
creases with K. Compared with uk2002 in Figure 8, indo2004
and eu2015 here has a very skewed degree distribution, which
can also be validated by their different δe values in Tables III
and V (K=32). With the increase of K, the heavy skewness
will yield a different numbers of edges among partitions in
high probability.

Figure 12 further studies how the runtime efficiency PT of
SPNL scales when varying the number of concurrent threads.
We clearly see that PT first decreases due to parallel accel-
eration, and then increases due to warm-up costs caused by
scheduling and essential synchronizing operations. A “sweet
spot” can achieve the best speedup but it varies with specific
settings. Generally, a large graph requires a big concurrent
granularity. Taking the small graph uk2002 and the large graph
sk2005 as examples, the “sweet spot” changes from 4 to 8.

VII. CONCLUSION

Graph partitioning traditionally is a key issue in parallel
and distributed big graph processing. This paper investigates
the shortcomings of existing streaming and offline partitioners,
and then proposes a new streaming replacement by fully utiliz-
ing knowledge. Optimizations about memory consumption and

TABLE V
THE OVERALL PERFORMANCE WHEN COMPARING SPNL WITH OFFLINE PARTITIONERS (K=32, PT : SECONDS).

Graphs METIS XtraPuLP (centralized/parallel) SPNL (centralized/parallel)
ECR δv δe PT ECR δv δe PT ECR δv δe PT

stanford 0.21 1.0 2.6 2.6 0.41/0.37 1.0/1.0 3.5/3.3 7.3/6.0 0.18/0.19 1.0/1.0 3.1/3.1 2.1/2.1
uk2005 0.28 1.0 2.7 1.3 0.60/0.64 1.0/1.0 1.8/1.6 1.4/1.2 0.32/0.31 1.1/1.1 2.7/2.6 0.8/0.9
eu2015 0.16 1.0 18.7 649.7 0.36/0.68 1.0/1.0 18.3/11.5 143.1/108.8 0.17/0.18 1.1/1.2 18.4/18.6 31.9/17.8

indo2004 0.06 1.0 8.5 117.7 0.46/0.69 1.0/1.0 8.5/8.1 106.7/88.9 0.04/0.04 1.0/1.0 8.6/8.6 33.3/20.8
uk2002 0.06 1.0 1.7 318.8 0.22/0.30 1.0/1.0 1.6/1.2 224.5/187.5 0.05/0.05 1.0/1.0 1.4/1.4 69.6/34.4

web2001 0.10 1.0 1.4 2757.9 0.27/0.33 1.0/1.0 1.4/1.1 1721.5/1401.2 0.06/0.07 1.0/1.0 1.3/1.3 344.0/209.7
sk2005 F F F F 0.35/0.33 1.0/1.0 1.4/1.3 880.5/652.8 0.10/0.10 1.0/1.0 1.6/1.6 369.7/161.6
uk2007 F F F F F/F F/F F/F F/F 0.03/0.03 1.0/1.0 2.1/2.0 875.6/327.0

0.0

0.2

0.4

0.6

0.8

2 4 8 16 32

E
C

R

Number of Parts

METIS

XtraPuLP

SPNL

(a) ECR

0.0

0.5

1.0

1.5

2.0

2 4 8 16 32

δ
v

Number of Parts

METIS

XtraPuLP

SPNL

(b) δv

 0

 2

 4

 6

 8

 10

2 4 8 16 32

δ
e

Number of Parts

METIS

XtraPuLP

SPNL

(c) δe

 0

 30

 60

 90

 120

 150

2 4 8 16 32

P
T

(s
)

Number of Parts

METIS

XtraPuLP

SPNL

(d) PT

Fig. 10. Impact of K on all metrics when compared with offline partitioners (indo2004)

0.0

0.1

0.2

0.3

0.4

0.5

2 4 8 16 32

E
C

R

Number of Parts

METIS

XtraPuLP

SPNL

(a) ECR

0.0

0.5

1.0

1.5

2.0

2 4 8 16 32

δ
v

Number of Parts

METIS

XtraPuLP

SPNL

(b) δv

 0

 5

 10

 15

 20

2 4 8 16 32

δ
e

Number of Parts

METIS

XtraPuLP

SPNL

(c) δe

 0

 200

 400

 600

 800

2 4 8 16 32

P
T

(s
)

Number of Parts

METIS

XtraPuLP

SPNL

(d) PT

Fig. 11. Impact of K on all metrics when compared with offline partitioners (eu2015)

 0

 50

 100

 150

 200

2 4 8 16 32 64

P
T

(s
)

Number of Threads

K=2

K=32

(a) uk2002

 0

 200

 400

 600

 800

2 4 8 16 32 64

P
T

(s
)

Number of Threads

K=2

K=32

(b) sk2005

Fig. 12. Evaluating the optimal parallel granularity of SPNL

parallel acceleration are also proposed to further enhance its
performance. Experiments validate that the proposed solution
works well with prominent partitioning quality and efficiency.

Although this paper focuses on vertex partitioning, the
quality optimization techniques actually can also work in edge
partitioning. We will explore the effectiveness as future works.

REFERENCES

[1] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-scale graph
processing,” in Proc. of SIGMOD. ACM, 2010, pp. 135–146.

[2] T. N. Bui and C. Jones, “Finding good approximate vertex and edge
partitions is np-hard,” Inf. Process. Lett., vol. 42, no. 3, pp. 153–159,
1992.

[3] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz, “Recent
advances in graph partitioning,” in Algorithm Engineering, ser. Lecture
Notes in Computer Science, 2016, vol. 9220, pp. 117–158.

[4] G. Karypis and V. Kumar, “Multilevel k-way partitioning scheme for
irregular graphs,” J. Parallel Distributed Comput., vol. 48, no. 1, pp.
96–129, 1998.

[5] L. Wang, Y. Xiao, B. Shao, and H. Wang, “How to partition a billion-
node graph,” in Proc. of ICDE. IEEE Computer Society, 2014, pp.
568–579.

[6] I. Stanton and G. Kliot, “Streaming graph partitioning for large dis-
tributed graphs,” in Proc. of SIGKDD, 2012, pp. 1222–1230.

[7] C. E. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic,
“FENNEL: streaming graph partitioning for massive scale graphs,” in
Proc. of WSDM. ACM, 2014, pp. 333–342.

[8] M. F. Faraj and C. Schulz, “Buffered streaming graph partitioning,” ACM
J. Exp. Algorithmics, vol. 27, pp. 1.10:1–1.10:26, 2022.

[9] S. Gong, Y. Zhang, and G. Yu, “Accelerating large-scale prioritized
graph computations by hotness balanced partition,” IEEE Trans. Parallel
Distributed Syst., vol. 32, no. 4, pp. 746–759, 2021.

[10] G. M. Slota, C. Root, K. D. Devine, K. Madduri, and S. Rajamanickam,
“Scalable, multi-constraint, complex-objective graph partitioning,” IEEE
Trans. Parallel Distributed Syst., vol. 31, no. 12, pp. 2789–2801, 2020.

[11] R. R. McCune, T. Weninger, and G. Madey, “Thinking like a vertex:
A survey of vertex-centric frameworks for large-scale distributed graph
processing,” ACM Comput. Surv., vol. 48, no. 2, pp. 25:1–25:39, 2015.

[12] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” Bell Syst. Tech. J., vol. 49, no. 2, pp. 291–307,
1970.

[13] F. Pellegrini and J. Roman, “Scotch: A software package for static
mapping by dual recursive bipartitioning of process and architecture
graphs,” in Proc. of International Conference on High-Performance
Computing and Networking. Springer, 1996, pp. 493–498.

[14] J. Ugander and L. Backstrom, “Balanced label propagation for partition-
ing massive graphs,” in Proc. of WSDM. ACM, 2013, pp. 507–516.

[15] F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity, and
S. Haridi, “JA-BE-JA: A distributed algorithm for balanced graph
partitioning,” in Proc. of SASO. IEEE Computer Society, 2013, pp.
51–60.

[16] G. M. Slota, S. Rajamanickam, K. D. Devine, and K. Madduri, “Par-
titioning trillion-edge graphs in minutes,” in Proc. of IPDPS. IEEE
Computer Society, 2017, pp. 646–655.

[17] D. Deng, F. Bai, Y. Tang, S. Zhou, C. Shahabi, and L. Zhu, “Label
propagation on k-partite graphs with heterophily,” IEEE Trans. Knowl.
Data Eng., vol. 33, no. 3, pp. 1064–1077, 2021.

[18] J. Nishimura and J. Ugander, “Restreaming graph partitioning: simple
versatile algorithms for advanced balancing,” in Proc. of SIGKDD, 2013,
pp. 1106–1114.

[19] G. Echbarthi and H. Kheddouci, “Fractional greedy and partial restream-
ing partitioning: New methods for massive graph partitioning,” in Proc.
of IEEE BigData. IEEE Computer Society, 2014, pp. 25–32.

[20] F. Petroni, L. Querzoni, K. Daudjee, S. Kamali, and G. Iacoboni,
“HDRF: stream-based partitioning for power-law graphs,” in Proc. of
CIKM. ACM, 2015, pp. 243–252.

[21] D. Kong, X. Xie, and Z. Zhang, “Clustering-based partitioning for large
web graphs,” in Proc. of ICDE. IEEE, 2022, pp. 593–606.

[22] R. Mayer, K. Orujzade, and H. Jacobsen, “Out-of-core edge partitioning
at linear run-time,” in Proc. of ICDE. IEEE, 2022, pp. 2629–2642.

[23] Y. Li, C. Li, A. Orgerie, and P. R. Parvédy, “WSGP: A window-based
streaming graph partitioning approach,” in Proc. of 21st IEEE/ACM
International Symposium on Cluster, Cloud and Internet Computing,
CCGrid 2021. IEEE, 2021, pp. 586–595.

[24] R. Mayer and H. Jacobsen, “Hybrid edge partitioner: Partitioning large
power-law graphs under memory constraints,” in Proc. of SIGMOD.
ACM, 2021, pp. 1289–1302.

[25] T. Ayall, H. Duan, C. Liu, F. Gereme, M. Abegaz, and M. Deleli, “Taking
heuristic based graph edge partitioning one step ahead via offstream
partitioning approach,” in Proc. of ICDE. IEEE, 2021, pp. 2081–2086.

[26] S. Ji, C. Bu, L. Li, and X. Wu, “Local graph edge partitioning,” ACM
Trans. Intell. Syst. Technol., vol. 12, no. 5, pp. 61:1–61:25, 2021.

[27] A. C. Zhou, B. Shen, Y. Xiao, S. Ibrahim, and B. He, “Cost-aware
partitioning for efficient large graph processing in geo-distributed dat-
acenters,” IEEE Trans. Parallel Distributed Syst., vol. 31, no. 7, pp.
1707–1723, 2020.

[28] G. Karypis and V. Kumar, “A parallel algorithm for multilevel graph
partitioning and sparse matrix ordering,” J. Parallel Distributed Comput.,
vol. 48, no. 1, pp. 71–95, 1998.

[29] C. Chevalier and F. Pellegrini, “Pt-scotch: A tool for efficient parallel
graph ordering,” Parallel Comput., vol. 34, no. 6-8, pp. 318–331, 2008.

[30] M. Holtgrewe, P. Sanders, and C. Schulz, “Engineering a scalable high
quality graph partitioner,” in Proc. of IPDPS. IEEE, 2010, pp. 1–12.

[31] Y. Akhremtsev, P. Sanders, and C. Schulz, “High-quality shared-memory
graph partitioning,” IEEE Trans. Parallel Distributed Syst., vol. 31,
no. 11, pp. 2710–2722, 2020.

[32] C. Martella, D. Logothetis, A. Loukas, and G. Siganos, “Spinner:
Scalable graph partitioning in the cloud,” in Proc. of ICDE. IEEE
Computer Society, 2017, pp. 1083–1094.

[33] Z. Shi, J. Li, P. Guo, S. Li, D. Feng, and Y. Su, “Partitioning dynamic
graph asynchronously with distributed FENNEL,” Future Gener. Com-
put. Syst., vol. 71, pp. 32–42, 2017.

[34] Q. Hua, Y. Li, D. Yu, and H. Jin, “Quasi-streaming graph partitioning:
A game theoretical approach,” IEEE Trans. Parallel Distributed Syst.,
vol. 30, no. 7, pp. 1643–1656, 2019.

[35] M. F. Faraj and C. Schulz, “Recursive multi-section on the fly: Shared-
memory streaming algorithms for hierarchical graph partitioning and
process mapping,” in Proc. of CLUSTER. IEEE, 2022, pp. 473–483.

[36] N. Wang, Z. Wang, Y. Gu, Y. Bao, and G. Yu, “TSH: easy-to-be
distributed partitioning for large-scale graphs,” Future Gener. Comput.
Syst., vol. 101, pp. 804–818, 2019.

[37] M. Hanai, T. Suzumura, W. J. Tan, E. S. Liu, G. Theodoropoulos, and
W. Cai, “Distributed edge partitioning for trillion-edge graphs,” VLDB
Endow., vol. 12, no. 13, pp. 2379–2392, 2019.

	Introduction
	Preliminaries
	Related Works
	Offline graph partitioning
	Streaming/online graph partitioning
	Parallel graph partitioning

	SPNL: Streaming graph partitioning with enhanced heuristics
	The basic linear deterministic greedy heuristic
	A heuristic with runtime in-out neighbors
	A heuristic utilizing topology locality

	Lightweight Streaming Optimizations
	Optimizing memory footprints with sliding window
	Optimizing efficiency with parallel partitioning

	EXPERIMENTS
	Benchmarks and Setups
	Effectiveness of sliding window
	Compared with streaming partitioners
	Compared with offline partitioners

	Conclusion
	References

