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1 Introduction

Personalized PageRank (PPR) is a classic topology-based
proximity measure and it is most widely computed by
Forward Push. That is, given a starting vertex s in graph G, it
iteratively computes the importance score of any vertex u in G
with respect to s, and then broadcasts the new score as
messages to u’s neighboring vertices. The process converges
until all scores hold stable. Recently, Graphical Processing
Units (GPU) with massive threads has been extensively used
to parallelize such compute-intensive process. It yields
performance improvement but also involves two atomic locks
for correctness. Such locks are practically inefficient and
become a new performance bottleneck. This paper proposes a
separation technique to partially eliminate atomic protections,
termed as Lightweight Forward Push. A Forward Pull solution
is further devised to support lock-free PPR computations but
also causes useless reads. For best performance, a new Hybrid
Framework is then designed to adaptively balance locking
costs and reading costs.

2 Lightweight forward push
Most PPR-related works employ an “one-pass” design
because receiving a message can affect the vertex value and
then make it possibly reach the update criterion 6. Such
detection can be executed up to |E| times because all edges
might be involved in generating messages. However, as shown
in Fig. 1(a), many source vertices like ], u» and u3 might send
messages to the same destination vertex like v, concurrently.
We should use heavy locks to distinguish such parallel
detection so as to avoid repeatedly adding v, into the
candidate update queue. Further investigation reveals that in
all |E| times of detecting operations, only |V| times at most are
valid. Take v, as an example. It is detected three times but
only the second is valid.

Our new technique breaks such “one-pass” design. As
shown in Fig. 1(b), it explicitly separates message propagation
from criterion detection with a newly inserted global barrier.
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Vertex values keep stable after the barrier since all possible
messages have been received. Then vertices can safely
perform criterion detection only once to remove locks.

3 Lock-free forward pull

Next, the core design of Forward Push is that a vertex can
immediately and actively deliver messages to its out-
neighboring destination vertices. As a result, a destination
vertex must passively and concurrently receive messages from
in-neighbors across different threads, leading to heavy write
races. We solve this problem by changing the message
propagation policy, i.e., Forward Pull. Now a destination
vertex will actively pull messages required on demand of its
update. That improves the time locality of arrived messages
and hence, we can allocate enough but temporary memory
spaces to store collected messages, instead of atomically
writing them into a single space.

Note that all of pulled messages must be sequentially
accumulated into the destination vertex, which is still time-
consuming. Now we try to parallelize the accumulation using
binary combination. As shown in Fig. 1(c), the consecutive
local storage spaces are evenly divided into two parts based on
the middle position. Binary combination reads the last part
values and combines them with the remaining half, which is
done by threads related to the latter in parallel. Combination
then continues on the remaining half. We repeat this process
until all messages are accumulated into the head space.

We are aware of some existing studies also mention Pull,
but they either work on CPU environments [1,2], or only
support BFS-like algorithms on GPU where a vertex is
updated at most once during iterations [3]. They are not
suitable for PPR on GPU with massive threads and frequent
updates.

4 A hybrid solution

Note that Forward Pull is still not free although it completely
releases the burden of locks. This is because a destination
vertex cannot exactly know which in-neighbor has been
updated before sending pulling requests. It then conservatively
collects messages from all in-neighbors, which clearly
generates useless reads and even makes Pull underperform
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Fig. 1 Optimizations used in Forward Push and Forward Pull. (a) Existing one-pass dataflow; (b) Separated dataflow; (c) Parallel binary
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Fig. 2 Performance analysis of different solutions on CPU and GPU devices. (a) Runtime (CPU vs. GPUL); (b) Runtime (CPU vs. GPUH); (c)

Effectiveness (LiveJ on GPUL)

Push if only a few in-neighbors are updated. We thereby
propose a hybrid framework on top of our lightweight Push
and Pull models, so that we can switch to an efficient one for a
specific iteration, to balance locking costs and read costs.

We especially study the switching timing in GPU
environments using the runtime difference of pushing and
pulling models, denoted by ¥. ¥ is computed at the end of
the kth iteration and then used to predict the comparison result
of the next iteration. The framework should run Push if
Y¢ <0, and Pull, otherwise. For more details, please refer to
the Online Resource 1.

5 Experiments

We compare our methods against the state-of-the-art GPU-
based PPR solution proposed in [4], denoted by push. Our
pushing and pulling models are respectively called as pushopt
and pull. hybrid is used to stand for our hybrid framework.

All tests are performed on real graph datasets, including
Pokec, Wiki, Stack and LiveJ. We process them on two GPU
devices and a CPU device. The former two have low and high
configurations, respectively denoted by GPUL and GPUH.
More details are given in Online Resource 2.

Figure 2 reports experiment results, where pushopt and pull
have different favorite scenarios but hybrid consistently
performs the best. In particular, on GPUL, compared with
pushopt and pull, hybrid respectively achieves up to 86% and
62% performance improvements (both on Pokec).

Figure 2(c) plots the sign of Y-score as a function of the
iteration counter, to show switching points predicted by
hybrid. We also manually mark the ground-truth/ideal swit-
ching points by solely running pushopt and pull. Clearly,

hybrid can roughly select the right model.

6 Conclusion

This paper proposes a hybrid framework on top of two newly
designed models to accelerate GPU-based PPR computations.
Extensive experiments validate the effectiveness and effici-
ency.
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