
1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3022014, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XXX, XXX 2018 1

Distributed Hypergraph Processing Using
Intersection Graphs

Yu Gu, Kaiqiang Yu, Zhen Song, Jianzhong Qi, Zhigang Wang, Ge Yu, Member, IEEE, Rui Zhang

Abstract—The advent of online applications such as social networks has led to an unprecedented scale of data and complex
relationships among data. Hypergraphs are introduced to represent complex relationships that may involve more than two entities. A
hypergraph is a generalized form of a graph, where edges are generalized to hyperedges. Each hyperedge may consist of any number
of vertices. The flexibility of hyperedges also brings challenges in distributed hypergraph processing. In particular, a hypergraph is
more difficult to be partitioned and distributed among k workers with balanced partitions. In this paper, we propose to convert a
hypergraph into an intersection graph before partitioning by leveraging the inherent shared relationships among hypergraphs. We
explore the intersection graph construction method and the corresponding partition strategy which can achieve the goal of evenly
distributing vertices and hyperedges across workers, while yielding a significant communication reduction. We also design a distributed
processing framework named Hyraph that can directly run hypergraph analysis algorithms on our intersection graphs. Experimental
results on real datasets confirm the effectiveness of our techniques and the efficiency of the Hyraph framework.

Index Terms—Hypergraphs, shared relationships, intersection graphs, distributed processing, graph processing

F

1 INTRODUCTION

W ITH the rise of applications such as social networks
and the rapid development of technologies such as

cloud computing, data scale has been increasing rapidly,
and the relationships among data are becoming more and
more complex. Hypergraphs are powerful tools to model
complex relationships. Each hyperedge in a hypergraph can
contain any number of vertices and hence the hypergraph
model can capture complex and high order relationships
among data objects. Take the author-cooperation as an ex-
ample. A hyperedge h1 with vertices {v1, v2, v3} can natu-
rally express the semantics that the paper h1 is cooperatively
written by authors v1, v2 and v3. However, such information
cannot be expressed easily in a regular graph with vertices
as authors and edges as cooperation relationships. Further,
if we run a pagerank algorithm on the regular graph to
evaluate authors, we might get inaccuracy evaluation. This
is because an author with high scores will have positive
impact on his/her co-authors, even though some of their co-
authored papers have less significant contribution. Because
of the strong expression and rich semantics, numerous hy-
pergraph analysis algorithms have been proposed in data
mining and information retrieval tasks [1], [2], [3], [4], [5],
many of which are naturally iterative.

Existing hypergraph iterative processing methods in-
clude SE (Star-Expansion), CE (Clique-Expansion) and Hy-
perX [6], [7]. SE converts the hypergraph into a bipartite

• Y. Gu, K. Yu, Z. Song and G. Yu are with the Department of Computer
Science, Northeastern University, Shenyang 110819, P. R. China.
E-mail: guyu, yuge@mail.neu.edu.cn.
E-mail: yukaiqiang1994, songzhen neu@163.com.

• J. Qi and R. Zhang are with the School of Computing and Information
Systems, The University of Melbourne, Australia.
E-mail: jianzhong.qi, rui.zhang@unimelb.edu.au

• Z. Wang is with the College of Information Science and Engineering,
Ocean University of China, Qingdao, Shandong, China.
E-mail: wangzhigang@ouc.edu.cn.

graph and then executes on the distributed graph process-
ing framework such as Giraph [8]. However, the overall
performance is still far from ideal since the characteristics
of hypergraph have not been fully considered. CE converts
the hypergraph into a homogeneous graph, which is inap-
plicable to hypergraph analysis tasks that need to update the
values of hyperedges. HyperX updates the values of hyper-
edges and vertices in the same superstep sequentially but
does not consider the structure of the original hypergraph,
usually yielding suboptimal performance. Differently, we
propose a hypergraph iterative processing method based
on intersection graphs denoted by IG. IG considers the
hypergraph structure under its construction and partition,
which solves the limitations mentioned above.

In this paper, we observe the sharing and symmetry
properties in hypergraphs and take advantages of them to
improve the efficiency of hypergraph processing. In hyper-
graphs, each hyperedge consists of a non-empty subset of
vertices. Different hyperedges may share common vertices,
i.e., they intersect. Similarly, for a vertex, there is a set
of hyperedges incident to it, and different vertices may
share common incident hyperedges. In distributed hyper-
graph processing, hyperedges with shared common vertices
and vertices with shared incident hyperedges should be
assigned to the same partition as much as possible. For
example, suppose the intersection of hyperedge hi and
hyperedge hj is S. When hi and hj are assigned into the
same partition, vertices in S need to send messages to only
one of hi and hj , instead of both, since the other can fetch
these shared messages directly. This design yields a signif-
icant communication reduction. The symmetry structure of
hypergraphs makes it possible to process hyperedges and
vertices in the same way.

Furthermore, we propose an intersection graph to rep-
resent the shared component relationships among the hy-
peredges and vertices. A hypergraph can be modeled as a

Authorized licensed use limited to: Ocean University of China. Downloaded on September 28,2020 at 06:26:38 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3022014, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XXX, XXX 2018 2

bipartite graph where the original vertices and hyperedges
constitute the vertex set. The message communication will
only occur along the edges in this bipartite graph when
conducting iterative computation. Therefore, we aim to
construct compressed bipartite graphs named intersection
graphs based on the shared relationships, so that the small-
est number of edges need to be reserved. When converting
a bipartite graph into an intersection graph, our goal is to
minimize the edges in the intersection graph while guaran-
teeing the correctness of computations.

Based on the intersection graph, we propose a distribut-
ed iterative hypergraph processing framework Hyraph on
top of Giraph [8]. It provides ease of use interfaces for
users to implement various hypergraph analysis algorithm-
s. For efficiently distributed computations, we propose a
heuristic partitioning algorithm to divide the intersection
graph among different workers. The basic idea is to assign
vertices (hyperedges) that share the incident hyperedges
(vertices) into the same partitions. In this way, the shared
relationships among the same shared hyperedge (vertex)
list can be preserved. In addition, vertices, hyperedges and
their corresponding outgoing edges will be distributed in a
balanced manner.

We now summarize our contributions below:

• We analyze the shared components among hyper-
edges and vertices and propose to use intersection
graphs to represent hypergraphs.

• We propose algorithms to compute intersection
graphs from hypergraphs and a partitioning algo-
rithm to partition the intersection graphs for dis-
tributed hypergraph processing.

• We further propose a distributed hypergraph pro-
cessing framework Hyraph to facilitate computa-
tions based on our intersection graphs. Extensive
experiments on real datasets show that the response
time can be reduced significantly in comparison with
the state-of-the-art hypergraph frameworks.

The rest of the paper is organized as follows. Sec.2
reviews related work and introduce necessary preliminary
knowledge. Sec.3 presents an overview of Hyraph. Sec.4
shows how to convert a hypergraph to an intersection graph
and partition the intersection graph for distributed execu-
tion. In Sec.5, we detail the implementation of Hyraph.
We then report the evaluation results in Sec.6 and finally
conclude this paper in Sec.7.

2 RELATED WORK AND PRELIMINARIES

In this section, we review studies on the processing systems
and partitioning algorithms of graphs and hypergraphs. Al-
so, some key preliminaries related to hypergraph processing
are introduced for better understanding our contributions.

2.1 Graph Processing
Iterative large-scale graph processing systems have been
studied extensively in recent years. Pregel developed by
Google [9] as one of the early representative pioneers em-
ploys a vertex-centric message-passing design in distributed
environments. That is also inherited by its open-source
implementation Giraph [8]. Pregel has been driving much

of the research on enhancing performance in perspectives of
communication [10], [11], convergence [12], [13], and disk-
based extension in centralized and distributed settings [14],
[15], [16]. Another system GraphX [17] provides APIs
similar to Pregel on top of a general-purpose Spark [18]
to utilize its ecosystem. Also, some related works like
GBASE [19] and GraphMat [20] try to compute graphs
with matrix-based methods.

More recently, Gimini [21] extends the hybrid push-
pull computation model from shared-memory to distributed
scenarios. It adopts a sparse-dense dual engine design, in
which computation and communication are handled dif-
ferentially in the two modes. KickStarter [22] attempts to
accelerate computations over streaming graphs for a class of
monotonic algorithms. When changes happen,KickStarter
incrementally maintains existing results by quickly detect-
ing the affected range and then correcting invalid results.
GraphBolt [23] is a dependency-driven streaming graph
processing system that aims to minimize redundant compu-
tations upon graph mutation. Compared with KickStarter,
it removes the monotonic constraint.

2.2 Hypergraph Processing

Typically, hypergraphs are first converted into graphs and
then processed using the graph frameworks mentioned
above. Our study also follows this paradigm, but the nov-
elty is that we convert hypergraphs into special types of
graphs, i.e., intersection graphs, in order to optimize com-
munication overheads. Below, we first review two existing
classic approaches of converting hypergraphs: star-expansion
(SE) and clique-expansion (CE), and then discuss hypergraph
processing systems and well-known learning algorithms.

Star-expansion. In SE, each hyperedge h is replaced by
a new vertex that connects to the vertices of h. The resultant
graph has two types of vertices, one from the vertices
of the original hypergraph and the other converted from
hyperedges of the original hypergraph. These two types of
vertices form a bipartite graph. Fig.1(a) shows a hypergraph,
where the black dots represent the vertices and the ellipses
represent the hyperedges. The resultant bipartite graphs
computed by SE is shown in Fig.1(b), where the black dots
are vertices from the hypergraph, and the red dots are new
vertices converted from hyperedges of the hypergraph.

Once a hypergraph has been converted, an iterative hy-
pergraph processing algorithm can be run as follows. Here,
we call an iteration a superstep. During two consecutive
supersteps, vertices and hyperedges are updated separately
in each superstep. Specifically, we take the label propagation
algorithm as an example. In superstep i, vertex v updates its
value using the messages received from the incident hyper-
edges in superstep i − 1, based on Eq.1. After v has been
updated, new messages are generated based on Eq.2 and
sent to its incident hyperedges so that the latter can update
their values via Eq.3 in superstep i + 1. Of course newly
updated hyperedges will continuously generate messages
via Eq.4 for incident vertices. This process continues until
a predefined number of iterations has been reached or the
algorithm converges, e.g., the vertex/hyperedge values do
not change any more. However, SE doesn’t consider the
unique structure of hypergraphs.

Authorized licensed use limited to: Ocean University of China. Downloaded on September 28,2020 at 06:26:38 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3022014, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XXX, XXX 2018 3

v0

v1
v2

v3 v5

v6

v4

h0

h1

h2

v7

h3

(a) Hypergraph

v0

v1

v2

v3

v5

v6

v4

h0

h1

h2

v7

h3

(b) SE

v0

v1

v2

v3 v5

v6

v4

v7

(c) CE

Fig. 1. Converting a hypergraph with SE and CE

v.val =

{
v.id itr = 1

max(h.msgs) itr > 1
(1)

v.msg = v.val (2)

h.val = max(v.msgs) (3)

h.msg = h.val (4)

Clique-expansion. In CE, each hyperedge is expanded
into a clique formed by all vertices in the hyperedge, i.e., an
edge is added to connect every pair of vertices in a hyper-
edge. Fig.1(c) shows a graph converted from the hypergraph
shown in Fig.1(a) via CE. Since no unique entity is used
in the converted graph to represent the hyperedges, the
CE method cannot be applied straightforwardly to hyper-
graph processing algorithms that need to update hyperedge
values. For better understanding, we still use the author-
cooperation hypergraph given in Introduction. Clearly, in
the converted graph output by CE, it just maintains the re-
lationships among authors, while the information between
authors and papers has been discarded. Further, the CE
method generates O(

∑
h∈H h.deg

2) additional edges where
H represents the set of hyperedges and h.deg represents
the degree of each edge. This may lead to substantial s-
torage and communication overheads. For example, both
MESH [24] and HyperX [7] have tested CE and SE, and
reported that CE can be slower up to 10 times than SE.

Hypergraph Processing Systems. HyperX [7] is a sys-
tem that processes hypergraphs without converting them
into graphs. It draws upon optimization techniques of
GraphX [17] and is also built on top of Spark [18].HyperX
stores hypergraph data in resilient distributed datasets (RD-
D). There are two main differences between HyperX and
graph processing frameworks: (1) In addition to the vertex-
centric programming model widely used in graph pro-
cessing frameworks, HyperX also provides a hyperedge-
centric programming model; (2) HyperX considers vertices
and hyperedges at the same time when partitioning a hy-
pergraph, which extends traditional vertex-cut and edge-
cut techniques. Again, HyperX doesn’t take the structure
of hypergraphs into account, yielding suboptimal perfor-
mance. MESH [24] is implemented on top of a graph
processing system GraphX [17], which mainly concentrates
on three aspects, namely ease of use, scalability, and ease of
implementation. While MESH can provide good expres-
siveness and flexibility, it has no advantage in computation
efficiency. Shun et al. [25] propose many parallel hypergraph

algorithms in centralized environments, which are extended
from classic graph algorithms. However, due to hardware
limitations, the centralized system lacks scalability and may
cause inefficiency for increasingly larger hypergraphs.

Hypergraph Learning. Considerable hypergraph learn-
ing algorithms have been studied in various scenarios. Berlt
et al. [1] model the web with a hypergraph which is derived
from the web graph by dividing the set of web pages
into non-overlapping blocks. Random Walks [26] on the
hypergraphs can identify the items that may be of interest
to a user. Gao et al. [3] propose a hypergraph shortest path
algorithm that allows dynamic changes of the values and
topologies of a hypergraph. Somu et al. [4] propose to use
hypergraph to represent the complex relationships among
features to solve feature selection problems. These works
focus on designing effective hypergraph algorithms, which
is different from our efforts about optimizing hypergraph
processing frameworks.

2.3 Graph and HyperGraph Partitioning

This subsection outlines key techniques of partitioning
graphs and hypergraphs, followed by a brief discussion
about dynamic partitioning.

Graph Partitioning. There exist two important re-
search branches for graph partitioning: streaming and non-
streaming. The latter scans the input graph multiple times,
which is time-consuming but can gradually refine par-
titioning quality. The well-known representatives include
METIS [27], PuLP [28] and their parallel/distributed vari-
ants [29], [30]. While, the former assumes graph data arrive
streamingly and then computes the placement of newly
arrived data based on the distribution of already placed da-
ta. This largely improves partitioning efficiency although it
compromises the quality. Many widely-used techniques em-
ploy such a design, like centralized LDG [31], FENNEL [32],
and distributed PowerGraph [11] and PowerLyra [33]. These
techniques mentioned above work well in the traditional
homogeneous scenario where graph computations transfer
messages among only vertices, which is different from the
heterogeneous hypergraph computations where messages
are exchanged between vertices and hyperedges. The two
scenarios naturally generate different quality metrics from
perspectives of communication reduction and load balance,
and then the heuristics employed are technically orthogonal.

Hypergraph Partitioning. A few studies propose hyper-
graph partitioning algorithms, mainly including multilevel
hMetis [34], PaToH [35], Mondriaan [36], and the distribut-
ed variants Parkway [37] and Zoltan [38]. They gradually
coarsen input hypergraph, divide the coarsest one, and then
project the partition back towards the original hypergraph.
Recently, some partitioning tools are also been released:
rFM [39] supports replication and relocation of vertices;
UMPa [40] allows optimizing multiple objective functions
simultaneously. All these hypergraph partitioning solutions
adopt the k-way partition strategy which aims to partition
vertices into k parts such that more vertices belonging to
the same hyperedges can be assigned into the same part.
The goal of such partitioning is to solve the applications
such as VLSI design, data storage of large databases on
disks and transportation management, instead of facilitating

Authorized licensed use limited to: Ocean University of China. Downloaded on September 28,2020 at 06:26:38 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3022014, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XXX, XXX 2018 4

v1
v2
v3

v4 v6

v5

h0 h1 h0

h1
v7

h2

v8 v9

h2
v1

v2

v3

h0

h1

v4

v5

v6

Fetch locally

[v1,v2,v3]

v7

v8

v9

h2

v1

v2

v3

h0

h1

v4

v5

v6

v7

v8

v9

h2

Fetch locally

[v5,v6,v7,v8]

Hyperedge Intersection Graph

Fig. 2. The hyperedge intersection graph

consequent iterative computation based on SE. Besides, the
balance of the hyperedges is not considered in these meth-
ods. We are also aware that Turk et al. [41] model social net-
works with temporal hypergraph to answer queries. They
partition the hypergraph by predicting possible user actions,
in order to reduce the average query span and balance
the server load. However, the idea cannot be extended to
general hypergraph computations.

Dynamic Partitioning. Wang et al. [42] discuss the
definition, topological structure and systems for the time-
dependent graphs. Given an original partition and updates
to a graph, the partitioners like [43], [44], [45] incremen-
tally compute changes to the old partition instead of re-
partitioning, which avoids high partitioning costs.

3 SOLUTION OVERVIEW

Fig.3 shows the four layers framework of Hyraph. The pre-
processing layer converts original hypergraph into intersec-
tion graph by algorithms introduced in Sec.4. The storage
layer divides an intersection graph into k partitions and
then stores them onto HDFS. The execution layer imple-
ments hypergraph processing on top of Giraph with ease of
use APIs for programming various application algorithms.
In the following, we first present the basic concepts and our
key observation that enables hypergraph processing using
intersection graphs. The detailed techniques and implemen-
tation will be given in Sec. 4 and Sec. 5, respectively.

3.1 Definitions
Let G = (V,H) be a hypergraph where V is the vertex
set and H is the hyperedge set. Each hyperedge h ∈ H
is a non-empty subset of V . For a hyperedge h ∈ H , its
degree, denoted by dh, is the number of vertices in h. For
a vertex v ∈ V , its degree, denoted by dv , is the number
of hyperedges that are incident to v. We use Γ(v) and Γ(h)
to denote the set of incident hyperedges of v and the set of
incident vertices of h respectively.

Intersection Graphs. An intersection graph is modeled
as IG = (GH , GV), where GH and GV represent the
hyperedge and vertex intersection graphs, respectively.
The hyperedge intersection graph is denoted by GH =
(V
⋃
H,EH), and EH indicates the set of edges. EH con-

tains two categories, i.e., Ermt and Eloc, where Ermt is the
remote edge set, and Eloc is the local one. Similarly, the
vertex intersection graph is denoted by GV = (V

⋃
H,EV),

where the edge set is denoted by EV = (Ermt, Eloc). The
hyperedge intersection graph is shown in Fig.2

Shared hyperedge and shared vertex. We call two hyper-
edges hi and hj shared hyperedges if their sets of incident

Original Hypergraph

Intersection Graph

HDFS

Apache Giraph

Hypergraph Learning Algorithms

IG Methods

Applications

Execution

Storage

Pre-Processing

Fig. 3. The overall framework of Hyraph

vertices overlap. Among all the shared hyperedges of hi,
the one that has the largest number of common incident
vertices with hi is called the dominant shared hyperedge of hi,
denoted as θ(hi). Similarly, we call two vertices vi and vj
shared vertices if their sets of incident hyperedges overlap.
Among all the shared vertices of vi, the one that has the
largest number of common incident hyperedges with vi is
called the dominant shared vertex of vi, denoted as θ(vi).

Final dominant shared hyperedge and final dominant shared
vertex. The final dominant shared hyperedge θ′(hi) of hyper-
edge hi is either the dominant shared hyperedge θ(hi)
of hyperedge hi or empty, depending on whether a ring
occurs when constructing a shared hyperedge list. Similarly,
the final dominant shared vertex θ′(vi) of vertex vi is either
the dominant shared vertex θ(vi) of vertex vi or empty,
depending on whether a ring occurs when constructing a
shared vertex list.

Shared hyperedge list and shared vertex list. Given a hy-
peredge hi, we can compute a series of dominant shared
hyperedges as hi, θ(hi), θ(θ(hi)), θ(θ(θ(hi))), ..., θn(hi). Let
the last hyperedge in this series be hj . Then, we call this
series the shared hyperedge list (SHL) between hi and hj .
Similarly, we can compute a series of dominant shared
vertices between vi and vj . We call such a series the shared
vertex list (SVL) between vi and vj . The last hyperedge in an
SHL is denoted as hLast and the last vertex in an SVL is
denoted as vLast.

Base hyperedge and base vertex. If θ′(hLast) does not exist,
hLast is the base hyperedge for all hyperedges in the current
SHL; Otherwise, the base hyperedge of θ′(hLast) is the base
hyperedge for all hyperedges in the current SHL. The base
hyperedge of hyperedge h is denoted as β(h). Similarly, the
base vertex of vertex v is denoted as β(v).

Symmetry structure of hypergraphs. We observe that hy-
peredges and vertices are structurally symmetrical. This is
illustrated with Fig.4. On the left of Fig.4, the hypergraph
is represented as a set of hyperedges, each of which is
a set of vertices. The right of Fig.4 is a redraw of the
same hypergraph, and we can also regard each vertex as
a non-empty subset of hyperedges. The symmetry between
hyperedges and vertices of hypergraph structure makes it
possible to handle hyperedges and vertices in the same way
using intersection graphs, which is detailed in the following
sections. The commonly used symbols are listed in Tab.1.

Authorized licensed use limited to: Ocean University of China. Downloaded on September 28,2020 at 06:26:38 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3022014, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XXX, XXX 2018 5

v0

v1

v4

v3

h0

v2

h2

h1 h3
h1

h0

h3

h2

v0

v2 v3

v4

v1

Fig. 4. Symmetry structure of a hypergraph
TABLE 1

Symbols and explanations

Symbols Explanations
Γ(h) The set of incident vertices of hyperedge h
Γ(v) The set of incident hyperedges of vertex v

∆(hi, hj) Intersection of hyperedge hi and hj

∆(vi, vj) Intersection of vertex vi and vj
θ(h) The dominant shared hyperedge of hyperedge h
θ′(h) The final dominant shared hyperedge of hyperedge h
θ(v) The dominant shared vertex of vertex v
θ′(v) The final dominant shared vertex of vertex v
β(h) The base hyperedge of hyperedge h
β(v) The base vertex of vertex v

3.2 Key Observation

In hypergraphs, each hyperedge is a non-empty subset of
vertices. Hyperedge hi and hyperedge hj can have common
vertices. In this case, we say that hi intersects hj . Such inter-
sections form the basis of constructing intersection graphs
to represent hypergraphs. Take Fig.2 as an example. There
are three hyperedges h0, h1, and h2 with different sets of
vertices. For h0, the dominant shared hyperedge is h1, that
is, θ(h0) = h1 and the intersection between h0 and h1 is
{v1, v2, v3}. For h1, the size of the intersection between h1

and h2 is larger than that between h1 and h0, and hence
the dominant shared hyperedge of h1 is h2. Recall that in
a specific iteration, either every vertex sends messages to
its incident hyperedges or every hyperedge sends messages
to its incident vertices. In a bipartite graph converted from
a hypergraph (via SE described in Section 2.2), we call the
incident hyperedges of vertex v the outgoing edges of v
and the incident vertices of hyperedge h as the outgoing
edges of h. In Fig.2, vertices in {v1, v2, v3, v4} need to send
messages to h0, vertices in {v1, v2, v3, v5, v6, v7, v8} need to
send messages to h1 and vertices in {v5, v6, v7, v8, v9} need
to send messages to h2. Since {v1, v2, v3} are shared by
h0 and h1, and {v5, v6, v7, v8} are shared by h1 and h2, if
we can assign h0, h1 and h2 into the same partition, the
messages generated by {v1, v2, v3} only need to be sent to
h1 and the messages generated by {v5, v6, v7, v8} only need
to be sent to h2, instead of both. Hyperedges h0 and h1 can
fetch these shared messages within the partition directly.
This avoids redundant message operations. Note that the
analysis of the shared vertices is similar because of the
symmetry of hypergraphs.

4 INTERSECTION GRAPH COMPUTATION

In this section, we discuss the key steps of generating inter-
section graphs and the corresponding partition method.

4.1 Overview of Intersection Graph Converting
To benefit from the shared hyperedges and vertices in hy-
pergraphs, our basic idea is as follows. Given a hypergraph
with |H| hyperedges and |V | vertices, we number the hy-
peredges from 0 to |H| − 1 and the vertices from |H| to
|H| + |V | − 1 for simplicity. We use curH and curV to rep-
resent the hyperedge and the vertex that is currently being
processed; curH starts from 0 while curV starts from |H|.
Because of the symmetry of the hypergraph structure, we
use the same approach to process hyperedges and vertices.

First, we need to acquire the dominant shared hyper-
edge/vertex for each hyperedge/vertex. The hyperedge
which has the most common vertices with curH is the
dominant shared hyperedge of curH. Two basic approaches
are introduced for this stage which will be introduced later
in Sec.4.2. Second, based on shared hyperedges/vertices, we
estimate the number of outgoing edges for each hyperedge
and vertex in the intersection graph, which is used to ensure
the balance of the number of messages sent by every worker.
Clearly, we need to control the total number of outgoing
edges of hyperedges and vertices in each worker. We detail
the approach of estimating the number of outgoing edges
in Sec.4.3. Third, based on the shared hyperedges and the
estimates of the outgoing edges of every hyperedges and
vertices, we are able to generate shared hyperedge lists and
shared vertex lists, both of which constitute an intersection
graph. We detail the approach of generating shared hyper-
edge/vertex lists in Sec.4.4.

After accomplishing the constructing of shared hyper-
edge lists and shared vertex lists, we finally get the inter-
section graph converted from the original hypergraph. We
propose a heuristic partitioning algorithm to partition the
resulted intersection graph and a second-order intersection
graph to further enhance the sharing effect in Sec.4.5.

We should stress that there exist two scenarios when
using intersection graphs, i.e., reusable and non-reusable.
We firstly briefly introduce several classic reusable scenar-
ios. CGP (Concurrent Graph Processing) states a classic
scenario where many different graph jobs are run over the
same input graph, which clearly provides opportunities to
share common operations and data (of course including
our intersection graphs). Many efforts have been devoted
into this issue [46], [47]. Another is two-phased partition-
ing [48] where the input graph is offline over-partitioned
into fine-grained m parts and then can be re-organized and
assigned onto k workers in a quickly online manner when
a job arrives. Also, for evolving graphs, we can build the
intersection graph and partition it for the initial snapshot.
Then, we can incrementally maintain existing results for the
subsequently arrived snapshots. Secondly, we optimize the
construction process by a pruning technique so that its cost
can be acceptable even in the non-reusable scenario. Alg.1
summarizes the construction procedures above.

4.2 Dominant Shared Hyperedge/Vertex Computation
Two approaches are proposed for this procedure, and the
hyperedge case is mentioned as an example. The first basic
approach is to find all appearing hyperedge pairs (hi,hj),
and then select neighboring hyperedges with the maximal
shared size as the dominant shared hyperedge. Assume

Authorized licensed use limited to: Ocean University of China. Downloaded on September 28,2020 at 06:26:38 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3022014, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XXX, XXX 2018 6

Algorithm 1: ConvertToIG
Input : A hypergraph G
Output: An intersection Graph IG

1 foreach hyperedge h do
2 //Get the dominant shared hyperedge for h
3 hSharedMap← getDSH (h)

4 foreach hyperedge h do
5 //Get the dominant shared vertex for v
6 vSharedMap← getDSV (v)

7 hEMap← getEstimatesForV (hSharedMap)
8 vEMap← getEstimatesForH (vSharedMap)
9 /*Generate shared hyperedge lists*/

10 foreach hyperedge h do
11 if !processed (h) then
12 //Algorithm 2
13 SHLs← buildSHLs (h, hSharedMap, hEMap)

14 /*Generate shared vertex lists*/
15 foreach vertex v do
16 if !processed(v) then
17 SVLs← buildSVLs (v, vSharedMap, vEMap)

18 partitionHyperedges(SHLs)//Algorithm 4
19 partitionVertices(SVLs)

the average degrees of vertices and hyperedges are dH
and dV separately. Since the sets of vertices contained in
hyperedges are stored by HashSet in initial hypergraphs,
we can describe the time complexity as O(dH ·dV · |H| ·dH)

for the hyperedge case, i.e., O(d
2

H · dV · |H|). The total time
complexity is O(d

2

H · dV · |H|) + d
2

V · dH · |V |), which is
clearly unacceptable for big graphs. To make it feasible, we
present another improved approach. For the hyperedge pair
(hi,hj), if hi ∈ Γ(vk) and hj ∈ Γ(vk), vk is the shared part
between hi and hj . Motivated by this, we traverse the vertex
set to calculate the intersection size of hyperedge pairs. The
time complexity is decreased to O(

∑ |V |
v d2

v). Furthermore,
real graphs usually have power-law degree distribution.
We find that several vertices with very large degrees can
seriously affect the efficiency. Based on our test, the ver-
tex with the degree of 40k takes nearly 0.8B calculations.
For better performance, we propose to prune such high-
degree vertices when computing hyperedge shared pairs.
That is reasonable because pruned vertices tend to appear
in quite a lot hyperedge pairs, which contribute less to
finding the dominant shared hyperedge. Note that such
vertices still participate in sharing in intersection graph. The
pruning technique can decrease the entire time complexity
to O(

∑ |Vp|
v d2

v +
∑ |Hp|

h d2
h), where |Vp| and |Hp| are the

sizes of the vertex set and hyperedge set after pruning,
respectively. Since the average and maximal degrees in Vp
and Hp are extremely less than those in V and H , we
achieve an excellent effect.

4.3 Obtaining the Estimations of Outgoing Edges

For the sake of balancing the workload in each worker, it is
necessary to estimate the outgoing edges of each hyperedge
and vertex. From Sec.3.2 we can see that when taking the
shared hyperedges into account, the outgoing edges of the
vertices are no longer the same as the original bipartite

graph. Let’s take vertex v1 as an example. In the original
hypergraph, the outgoing edges of v1 are {h0, h1}, which
are exactly the incident hyperedges of v1. When considering
the shared relationships, the outgoing edges of v1 become
{h1}, which is a subset of Γ(v1). When dealing with the
shared hyperedges, vertices need to send messages to cor-
responding hyperedges. Therefore, the outgoing edges of
those vertices need to be determined. Similarly, the outgoing
edges of hyperedges can be determined when processing
vertices. Therefore, the total number of outgoing edges
from all hyperedges can be determined only after all the
vertices are processed. And only after all the hyperedges
are processed can the total number of the outgoing edges
of the vertices be determined. However, when generating
shared hyperedge lists, we need to acquire the total amount
of the outgoing edges in the current shared hyperedge lists
to prevent the number from being too large.

Fortunately, we can get the estimated values of the
amount of outgoing edges of hyperedges and vertices.
When estimating the amount of outgoing edges of hyper-
edges, the information of dominant shared vertices will be
used and vice versa. The estimating procedure of hyper-
edges and vertices is the same. Here we take the hyper-
edges’ estimating as an example. We start with the hyper-
edge with id 0 to sequentially process every hyperedge
according to their ids, and denote the hyperedge that is
being processed as curH. If curH does not have the dominant
shared hyperedge, all vertices in Γ(curH) need to add outgo-
ing edges to curH, that is, the number of outgoing edges of
each vertex in Γ(curH) needs to be increased by 1; otherwise,
there exists the dominant shared hyperedge for curH. There
are two cases : (1) the id of θ(curH) is larger than the id of
curH, which means θ(curH) has not been processed yet. In
this case, only the number of outgoing edges of each vertex
in Γ(curH) − ∆(curH, θ(curH)) needs to be increased by 1;
(2) the id of θ(curH) is less than that of curH, which means
θ(curH) has been processed before. In this case, we should
add outgoing edges for all vertices in Γ(curH), instead of
only for Γ(curH) − ∆(curH, θ(curH)). Otherwise, vertices
in ∆(curH, θ(curH)) will lose outgoing edges to curH. The
time complexity of this stage is O(|V | · dV + |H| · dH),
i.e., O(|E|), where |E| indicates total edge number in the
bipartite graph. After all hyperedges have been processed,
we can get the sum of all the estimating outgoing edges
of vertices, denoted as V SumEdges. Similarly, we denote
the sum of all the estimated outgoing edges of hyperedges
as HSumEdges. We set the hyperedges’ outgoing edges
threshold(HET) as HSumEdges / k and the vertices’
outgoing edges threshold(HV T) as V SumEdges / k where
k is the number of partitions. When generating the shared
hyperedge lists and shared vertex lists, the sum of all the
hyperedges’ outgoing edges in a certain shared hyperedge
list should not exceed HET and V ET for the sum of all the
vertices’ outgoing edges in a certain shared vertex list.

For example, if curH is h0 and its dominant shared
hyperedge is h1, then ∆(h0, h1) = {v1, v2, v3}. In this
case, since the id of h1 is larger than the id of h0, we do
not need to add outgoing edges for vertices in ∆(h0, h1).
When h0 has been processed, curH is h1. If the dominant
shared hyperedge for h1 happens to be h0, we still have
∆(h1, h0) = {v1, v2, v3}. In this case, the id of θ(curH) is

Authorized licensed use limited to: Ocean University of China. Downloaded on September 28,2020 at 06:26:38 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3022014, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XXX, XXX 2018 7

less than that of curH. If we do not add outgoing edges
for the vertices in ∆(h1, h0), neither h1 nor h0 will receive
messages from vertices in {v1, v2, v3}, that is, the messages
from {v1, v2, v3} are lost for h1 and h0. Thus, we need to
add outgoing edges for {v1, v2, v3} to hyperedge h1.

4.4 Computing Shared Hyperedge/Vertex Lists

For simplicity, we write θ(θ(hi)) as θ2(hi). From hi, we
start to search for the dominant shared hyperedge, and the
dominant shared hyperedge of the k-th hyperedge hi+k is
denoted by θk(hi). In the procedure of constantly looking
for θk(hi) from the initial hyperedge hi, we will finally get
a series of hyperedges that have shared relationships, all
of which constitute a shared hyperedge list (SHL). Note that
when constructing a SHL, we need to use the final dominant
shared hyperedge θ′(hi) for current hyperedge hi, which is
computed based on θ(hi), instead of using θ(hi) directly.
The final dominant shared hyperedge θ′(hi) of hyperedge
hi is either the dominant shared hyperedge θ(hi) or empty,
depending on whether a ring occurs, which is detailed in
Sec.4.5. Similarly, the final dominant shared vertex θ′(vi)
of vertex vi needs to be computed when generating shared
vertex lists. After that, we can get the common vertex set of
hi and θ′(hi).

During the procedure of constructing the shared hyper-
edge lists, the initial hyperedge is denoted as start, the
shared hyperedge list obtained from start hyperedge is
denoted as list and the sum of the outgoing edges of all hy-
peredges in list is denoted as outEdgeNum. All hyperedges
are encoded from 0 to |H| and start begins from the first
hyperedge to constantly construct the shared hyperedge
lists for obtaining the final dominant shared hyperedge and
base hyperedge for every hyperedge. During the procedure,
we need to guarantee that the sum of outgoing edges and
the number of all hyperedges in each shared hyperedge list
won’t exceed the hyperedge outgoing edges thresholdHET
and the hyperedge number threshold HT respectively. HT
equals to |H| / k where k is the number of partitions.
The procedure of computing the shared hyperedges lists
are summarized in Alg.2. Assuming that the hyperedge
currently being processed is curH, there are three cases:

Case 1: curH has not been processed, outEdgeNum is
less than HET and the number of hyperedges in list is
less than HT . We obtain the final dominant shared hy-
peredge θ′(curH) for curH. If θ′(curH) is not empty, the
mapping relationship of curH and θ′(curH) need to be
stored and we should add outgoing edges for vertices in
Γ(curH) − ∆(curH, θ′(curH)). What’s more, curH needs to
be added to list and outEdgeNum needs to increase by
the estimate of the outgoing edges of curH. Finally, θ′(curH)
becomes θ(curH) and the procedure is repeated. Otherwise,
the final dominant shared hyperedge θ′(curH) for curH does
not exist and we cannot continue to construct the current
shared hyperedge list. At this time, curH becomes the base
hyperedge of all the other hyperedges in list. Suppose
hyperedge B is the base hyperedge and all vertices incident
to B need to add edges to it. In addition, B might be
other hyperedges’ base hyperedge, so for those hyperedges
whose base hyperedge is B, we need to store the number of
hyperedges and the number of outgoing edges for B.

Algorithm 2: BuildSHLs
Input : hyperedge curH, hSharedMap, hEMap
Output: A shared hyperedge list from hyperedge curH

1 list← ∅, outEdgeNum← 0, nodeNum← 0
2 while curH 6= ∅ and !processd(curH) and
outEdgeNum < HET and nodeNum++< HT do

3 list.add (curH)
4 outEdgeNum += getEstimateOutEdgeNum (curH)
5 θ′(curH)← getFDSH (curH) //Algorithm 3
6 computeIntersection (curH, θ′(curH))
7 if θ′(curH) = ∅ then
8 curH is the base hyperedge
9 baseNum[curH] += list.size

10 edgeNum[curH] += outEdgeNum

11 addOutgoingEdges (Γ(curH)−∆(curH, θ′(curH)))
12 curH← θ′(curH)

13 if outEdgeNum > HET then
14 if !processed (curH) then
15 curH is the base hyperedge
16 list.add (curH)
17 curHOE = getEstimateOutEdgeNum (curH)
18 baseNum[curH] += list.size
19 edgeNum[curH] += outEdgeNum + curHOE
20 addOutgoingEdges (curHOE)

21 else
22 hLast is the base hyperedge
23 baseNum[hLast] += list.size
24 edgeNum[hLast] += outEdgeNum
25 addOutgoingEdges (∆(hLast, θ′(curH)))

26 if list.size > HT then
27 base← obtainBase (curH)
28 if edgeNum[base] + outEdgeNum < HET then
29 base is the base hyperedge
30 baseNum[base] += list.size
31 edgeNum[base] += outEdgeNum

32 else
33 hLast is the base hyperedge
34 baseNum[hLast] += list.size
35 edgeNum[hLast] += outEdgeNum
36 addOutgoingEdges (∆(hLast, θ′(curH)))

Case 2: curH has already been processed before. We
obtain the base hyperedge β(curH) for curH. If the sum
of outgoing edges doesn’t exceed HET and the number
of hyperedges corresponding to β(curH) doesn’t exceed
HT , β(curH) is the base hyperedge for all hyperedges in
list. Otherwise, the last hyperedge hLast in list becomes
the base hyperedge for all the other hyperedges in list.
Since hLast no longer shares vertices with curH, vertices
in ∆(hLast, curH) need to add edges to hLast.

Case 3: outEdgeNum exceeds the hyperedge outgoing
edge threshold HET . The last hyperedge hLast in the
current shared hyperedge list becomes the base hyperedge
for all other hyperedges in list. What’s more, vertices in
∆(hLast, curH) need to add edges to hLast.

Alg.2 summarizes the procedure of constructing shared
hyperedge lists, and we call it the Building Shared Hyper-
edge Lists (buildSHLs) algorithm. Let’s take the processing
procedure of computing shared hyperedge lists as an ex-
ample to make it more intuitive. In Fig.5, from the initial
hyperedge S1, we constantly look for the final dominant

Authorized licensed use limited to: Ocean University of China. Downloaded on September 28,2020 at 06:26:38 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3022014, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XXX, XXX 2018 8

shared hyperedge. When hyperedge E1 is reached, we have
θ′(E1) = ∅, which meansE1 is the base hyperedge for all the
hyperedges in SHL1. The above procedure is repeated for
S2. When E2 is reached, we have θ′(E2) = θ′(E1) and E1

has already been processed, so we can get β(E1) = E1.E1 is
the base hyperedge for all hyperedges in SHL2. The process-
es of S3 and S4 are similar with S2. Next, starting from hy-
peredge S5, when E5 is reached, we have θ′(E5) = θ′(E3).
E3 has been processed and θ′(E3) = θ′(E1).

If all hyperedges in SHL5 take E1 as their base hyper-
edge, the outgoing edge number will exceed the thresh-
old HET , so E5 is the new base hyperedge for all oth-
er hyperedges in SHL5. The overall time complexity of
Alg.2 is O(|H| · dH + |V | · dV). Since the process of
computeIntersection (Line 7 in Alg.2) can complete in the
stage of Sec.4.3, the time complexity becomes O(|H|+ |V |).

4.5 Final Dominant Shared Hyperedges/Vertices
For the original hypergraph, we can obtain the dominant
shared hyperedge for each hyperedge and the dominant
shared vertex for each vertex easily. However, the dominant
shared hyperedges/vertices cannot be used directly when
computing the shared hyperedge/vertex lists. Suppose the
dominant shared hyperedge of hyperedge hi is hj , that is,
θ(hi)=hj . Only the vertices in Γ(hi) - ∆(hi, hj) need to add
outgoing edges to hi. When hyperedge hj is being pro-
cessed, suppose its dominant shared hyperedge happens to
be hi. The vertices in Γ(hj) - ∆(hj , hi) need to add outgoing
edges to hj . Since ∆(hi, hj) equals to ∆(hj , hi), the vertices
in ∆(hi, hj) are lost outgoing edges related to hi and hj ,
which breaks the incident relationships of hyperedges and
vertices in the original hypergraph. To avoid this, we need
to compute the final dominant shared hyperedge θ′(hi) for
each hyperedge hi and the final dominant shared vertex for
each vertex vi. Note that θ′(hi) and θ′(vi) either equals to
θ(hi) and θ(vi) or empty sets.

Algorithm 3: GetFDSH
Input : hyperedge curH, preHShareMap, hShareMap
Output: θ′(curH)

1 if !preHSharedMap.containsKey(curH) then
2 θ′(curH)← ∅
3 else
4 θ(curH)← preHSharedMap.get (curH)
5 if hShareMap.containsKey(θ(curH)) then
6 if from θ(curH) can reach curH then
7 θ′(curH)← ∅
8 else
9 θ′(curH)← θ(curH)

10 else
11 θ′(curH)← θ(curH)

12 hShareMap.put (curH, θ′(curH))

The method of obtaining the final dominant shared hy-
peredge for each hyperedge is the same as that of the vertex.
Here the processing procedure for hyperedges is introduced
as an example. For the current hyperedge curH, there are
two cases that will make θ(curH) equal to ∅: (1) curH is
the initial hyperedge and curH is an isolated hyperedge,

①② ③

④

⑤

S1S2 S3

S4

S5

NodeNum>HT
E2

E1

E3

E4

E5

S6

OutEdgeNum>HET

⑥

E6

M1

M2

Start Hyperedge in SHL

Shared Hyperedge List

Base Hyperedge

S

M

E

Hyperedge in SHL

End Hyperedge in SHL

Fig. 5. Computing shared hyperedge lists

as shown in Fig.6(a); (2) curH has the dominant shared
hyperedge θ(curH) and θ(curH) has been processed and
starting from θ(curH) can eventually reach curH again, that
is, a ring is formed. We need to set θ′(curH) to be empty, as
shown in Fig.6(b).

For the current hyperedge curH, θ(curH) not equal to ∅ is
also divided into two cases: (1) If the dominant shared hy-
peredge θ(curH) is not processed, then θ′(curH) is θ(curH),
as shown in Fig.6(c); (2) Suppose the dominant shared
hyperedge θ′(curH) has been processed, but it can not reach
curH from curH, that is, no ring can be formed, as shown in
Fig.6(d). Alg.3 summarizes the procedure of obtaining the
final dominant shared hyperedges, and we call it the Getting
Final DSH (getFDSH) algorithm. hShareMap in the input
of getfinalDSH algorithm is used to store the mapping
relationship of hyperedge hi and its final dominant shared
hyperedge θ′(hi).

4.6 Partitioning Intersection Graphs
4.6.1 Partition and Second-order Intersection Graph
When partitioning an intersection graph, our goal is to
balance the hyperedges, vertices, outgoing edges from hy-
peredges and vertices across different workers. According
to the symmetry of hypergraph, only the hyperedge case is
considered here. Assuming we partition the hyperedge set
H into k disjoint subsetsH1, H2, . . . ,Hk, where k represents
worker number andHi is a subset of hyperedges assigned to
the i-th worker. To balance the workload, the number of hy-
peredge and outgoing edge of each worker needs to satisfy
|Hi| ≤ |H|k , 1 ≤ i ≤ k and HEdgei ≤ HSumEdge

k , 1 ≤ i ≤ k,
respectively, where HSumEdge indicates the sum of the
hyperedge’s outgoing edges. From Sec.4.4 we can realize
that both the hyperedge curH and its final dominant shared
hyperedge θ′(curH) correspond to the same base hyperedge,
while each base hyperedge corresponds to a number of non-
base hyperedges. We call each base hyperedge and all the
corresponded hyperedges as a hyperedge allocation unit,
denoted as HAU. We need to divide all the hyperedges in
each allocation unit into the same partition to make full use
of the shared relationships among the hyperedges.

As shown in Alg.4, for each base hyperedge Bi, all the
corresponded hyperedges are collected to form the current
allocation unit HAU. After all the hyperedge allocation units
are obtained, the allocation units are sorted in descending
order according to the sum of the amount of the outgoing
edges to pre-divide the hyperedge allocation units with

Authorized licensed use limited to: Ocean University of China. Downloaded on September 28,2020 at 06:26:38 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3022014, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XXX, XXX 2018 9

curH

q (curH)

start

Empty

q (curH) q (curH)

start

q (curH)

Processed

Not Processed

 (a) (b) (c) (d)

Fig. 6. Computing final dominant shared hyperedges

more outgoing edges. Given k workers, every worker holds
0 outgoing edges at the beginning. We partition the HAU
with the most outgoing edges to the worker with the least
loaded outgoing edges.

Algorithm 4: PartitionHyperedges
Input : All shared hyperedges lists SHLs
Output: Each hyperedge h and its corresponding

assigned worker id

1 HAUList← ∅
2 foreach baseH in hBaseMap do
3 HAUBaseH.add (hBaseMap.get (baseH))
4 HAUList.add (HAUBaseH)

5 sort HAUList in descending order according to the
number of outgoing edges

6 foreach HAU in HAUList do
7 workerId← getMinOutgoingEdgeLoad ()
8 foreach hyperedge h in HAU do
9 h.workerId← workerId

10 foreach v in Γ(h) do
11 if vSetOfWorker[workerId].contains(v) then
12 Γ(h).remove(v);

13 else
14 vSetOfWorker[WorkerId].add(v)

Along the logical partitioning process, we make further
efforts to improve the performance of intersection graph.
We construct the second-order intersection for the various
hyperedge (vertex) lists of the same worker (lines 11-14 in
Alg.4). Then, we transform second-order sharing into hyper-
edge (vertex) structure to keep consistency with intersection
graph.

The time complexity analysis of this stage is summarized
as follows. The first part (Lines 2-4 in Alg.4) divides all
SHLs according to baseH, which occupies O(NSHL) time
complexity, where NSHL represents the number of SHLs.
The time complexity of the second part (Lines 5 in Alg.4) is
O(NHAU ·log(NHAU)), whereNHAU is the size of HAUList.
For the last part (Lines 6-14 in Alg.4), the time complexity
is O(|H| · dH). In general, the overall time complexity of
the partitioning process is O(NSHL + NSV L + NHAU ·
log(NHAU) +NV AU · log(NV AU) + (|H| · dH) + (|V | · dV)).
SinceNSHL < |H| andNSV L < |V |, we can reduce the time
complexity to O(NHAU · log(NHAU)+NV AU · log(NV AU)+
(|H| · dH) + (|V | · dV)).

4.6.2 Analysis of Intersection Graphs
Time Complexity. The time complexity of the process of
intersection graph construction and partitioning has been

analyzed in related sections. We merge them to generate a
total time complexity of O(

∑ |Vp|
v d2

v +
∑ |Hp|

h d2
h + NHAU ·

log(NHAU) +NV AU · log(NV AU) + |E|).
Intersection Graph Benefits. Assume that the final dom-

inant shared hyperedge of hi is hj . Without considering
the shared relationships, the total number of messages sent
to hi and hj is Γ(hi) + Γ(hj). When taking the shared
relationships into account, the number is Γ(hi) + Γ(hj) −
|∆(hi, hj)|. For hi and hj , the reduced number of mes-
sages is |∆(hi, hj)|. The total number of messages sent
to hyperedges in an intersection graph is

∑|H|
i=1(Γ(hi) −

|∆(hi, θ
′(hi))|), and the same analysis holds true for the

vertex case. As a result, the total number of reduced mes-
sages in an intersection graph is

∑|H|
i=1(|∆(hi, θ

′(hi))|) +∑|V |
j=1(|∆(vj , θ

′(vj))|). After constructing the second-order
intersection graph, we partition hyperedges and vertices
into two categories respectively, i.e., with/without the final
dominant shared hyperedge (vertex). The former can ben-
efit from other shared hyperedge/vertex lists in the same
worker, while the latter cannot. Assume that W is the set
of workers, θ′H and θ′V represent the set of hyperedges and
vertices with the final dominant shared ones, respectively.
Thus, the total message number of intersection graph is
decreased to:∑
k∈W

(
∑
h/∈θ′H

|Γ(h)|+ |
⋃
h∈θ′H

Γ(h)|+
∑
v/∈θ′V

|Γ(v)|+ |
⋃
v∈θ′V

Γ(v)|).

Limitations of Hyraph. Our Hyraph mainly tackles the
communication-intensive scenario, which is generally the
bottleneck of the distributed systems. Although the number
of remote messages has been decreased, the total aggre-
gation number of messages keeps the same with bipartite
graph. Also, there remains a promotion space for dynamic
hypergraphs, i.e., how to share new vertices or hyperedges
through intersection graphs and how to keep the structure
of intersection graphs when vertices or hyperedges are
deleted.

5 IMPLEMENTATION

In this section, we discuss how the intersection graphs are
stored and how iterative hypergraph processing algorithms
are run based on the intersection graphs.

5.1 Storage of Intersection Graphs
We use adjacency lists to represent intersection
graphs. Every hyperedge is stored as a 7-tuple:
〈hi,∆(hi, θ

′(hi)), hType, workerId, deg, E(hi), B(E(hi))〉
Here, hi is the ID of the hyperedge; ∆(hi, θ

′(hi)) is the
common vertices shared by hi and θ(hi); hType indicates
that this entity is a hyperedge; workerId is the ID of the
worker that hi is to be assigned to; deg is the degree of hi;
E(hi) is the set of outgoing edges ids; B(E(hi)) is the ID
set of workers where outgoing edges are assigned.

Every vertex is stored as a 7-tuple:
〈vi,∆(vi, θ

′(vi)), vType, workerId, deg, E(vi), B(E(vi))〉
Here, vi is the ID of the vertex; ∆(vi, θ

′(vi)) is the common
hyperedges shared by vi and θ(vi); vType indicates that
this entity is a vertex; workerId is the ID of the worker that
vi is to be assigned to; deg is the degree of vi; E(vi) is the

Authorized licensed use limited to: Ocean University of China. Downloaded on September 28,2020 at 06:26:38 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3022014, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XXX, XXX 2018 10

set of outgoing edges ids; B(E(vi)) is the set of the IDs of
the workers that the outgoing edges are to be assigned to.

5.2 Iterative Processing Based on Intersection Graphs

Running application algorithms with intersection graphs
(IG) is very similar to that with bipartite graphs via SE
as described in Sec.2.2. In two consecutive iterations, the
vertices and hyperedges update their values based on their
neighbouring vertices and hyperedges respectively, until a
termination condition is reached, e.g., when there are no
messages sent or a predefined number of iterations has been
reached. The update procedure is shown in Alg.5.

Algorithm 5: VertexHyperedgeUpdate
Input : Vertex v, Messages msgs
Output: New vertex value and messages

1 // Vertex Update
2 if turn==0 then
3 if itr == 0 then
4 initialize v.val

5 else
6 v.val← v.update (v.val,msgs)

7 outMsg ← generateMessages (v.val)
8 foreach incident hyperedge h of v do
9 sendMessage (outMsg, h, β(h))

10 // Hyperedge Update
11 else
12 h.val← h.update (h.val,msgs)
13 outMsg ←generateMessages (h.val)
14 foreach incident vertex v of h do
15 sendMessage (outMsg, v, β(v))

The main difference between IG and the iterative up-
dating procedures of SE lies in how the updated messages
(vertex or hyperedge values) are obtained for the vertices
and hyperedges. Hyraph adopts the push-based message
acquisition mechanism, that is, messages generated in su-
perstep i are sent along outgoing edges and these messages
will be received and used for updates in superstep i + 1.
For SE, in superstep i, hyperedge h can receive all the
messages from its incident vertices that generate and send
the messages in superstep i−1. In this way, every hyperedge
can receive all messages directly. For IG, since we know
that the final dominant shared hyperedge θ′(hi) (or vertex
θ′(vi)) of a hyperedge hi (or vertex (vi)) is assigned to the
same partition as hi (vi), we can directly fetch the update
messages of the vertices shared with θ′(hi) since θ′(hi) can
receive the shared messages between hi and θ′(hi), rather
than requesting the update messages from other partitions
where those vertices lie. Therefore, the update messages of
the shared vertices only need to be fetched once from other
partitions, which reduces the communication costs.

We denote the messages that hyperedge hi receives
as ownMsgs and the messages shared with θ′(hi) as
sharedMsgs. These two types of messages constitute the
messages used by hi for updating its value. To enable
the shared update procedure above, we create an array
msgArray (of size |H|+ |V |) where each element stores the
update message from a vertex or hyperedge. Before starting

a superstep,msgArray needs to be filled to support the pro-
cessing of IG. If hyperedge hi has shared hyperedge θ′(hi),
hi needs to fetch the update messages of ∆(hi, θ

′(hi)) from
msgArray.

Example Hyraph Applications. Since hypergraph-
related studies attracted a lot of attentions, many mining
algorithms have already been proposed in existing work-
s [7], [24], [25], like connected components, pagerank, label
propagation, random walk and shortest path computation.
These algorithms are initially designed for regular graph
processing but now can be run over hypergraphs with little
modification to discover more knowledge or improve the
recommendation accuracy. Here, limited by the manuscript
length, we give the pseudocodes of connected components
as a classic representative (see Alg.6) to show existing al-
gorithms can be easily implemented using our techniques.
For more implementation details, please refer to related
References [7], [24], [25].

Algorithm 6: ConnectedComponents

Input : Vertex v, Hyperedge h, Messages AllMsgs
Output: New hyperedge/vertex value and messages

1 // Vertex Program
2 if turn==0 then
3 if itr==0 then
4 v.val← v.id
5 outMsg ← v.val
6 foreach incident hyperedge h of v do
7 sendMessage (outMsg, h, β(h))

8 else if AllMsgs 6= φ & max(AllMsgs) > v.val then
9 v.val← max(AllMsgs)

10 outMsg ← v.val
11 foreach incident hyperedge h of v do
12 sendMessage (outMsg, h, β(h))

13 v.voteToHalt()

14 // Hyperedge Program
15 else
16 if AllMsgs 6= φ & max(AllMsgs) > h.val then
17 h.val← max(AllMsgs)
18 outMsg ← h.val
19 foreach incident vertex v of h do
20 sendMessage (outMsg, v, β(v))

21 h.voteToHalt()

6 EXPERIMENTS

Now we run hypergraph analysis jobs on our proposed
Hyraph framework to evaluate its performance.

6.1 Experimental Settings
The default experiments are run on a cluster of 9 physical
machines (8 as workers and 1 as master) connected with
Gigabit Ethernet, each of which has 4 Intel(R) Xeon(R) CPUs
running at 3.30GHz and is equipped with 16GB memory.
Hyraph is implemented on top of Apache Giraph 1.2.0.

Datasets and Algorithms As summarized in Tab.2, we
use the following four datasets. Reuters (RE) dataset con-
tains a set of story-word inclusion relationships extracted
from Reuters news stories in the Reuters Corpus, Volume

Authorized licensed use limited to: Ocean University of China. Downloaded on September 28,2020 at 06:26:38 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3022014, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XXX, XXX 2018 11

TABLE 2
Dataset Statistics

Data |H| |V | H Avg H Max V Avg V Max Edge

RE1 283,911 781,265 213.34 345,056 77.53 1585 60,569,726
FR2 1,620,991 7,944,949 14.48 9,299 2.96 1,700 23,479,217
DB3 5,699,408 1,973,769 2.44 315 7.04 42,385 13,901,295
OG4 8,730,857 2,783,196 37.46 318,240 117.50 40,425 327,037,487

TABLE 3
Intersection Graph Size

Data |H| |V | H Avg H Max V Avg V Max HOutEdge V OutEdge
RE 283,911 781,265 118.06 192,444 61.34 857 33,517,552 47,921,289
FR 1,620,991 7,944,949 6.09 7,172 2.14 869 12,441,377 15,838,430
DB 5,699,408 1,973,769 1.48 70 2.38 11,664 9,613,126 8,612,777
OG 8,730,857 2,783,196 12.09 70,282 67.82 22,578 105,556,061 188,756,356

1 (RCV1). Each word can be seen as a vertex while a news
story can be seen as a hyperedge. Friendster (FR) dataset
contains an on-line gaming network. Each game player can
be seen as a vertex while a game player group forms a
hyperedge. Dblp (DB) dataset contains the authorship net-
work of the DBLP computer science bibliography repository.
Each author can be seen as a vertex while a publication can
be seen as a hyperedge. Orkut-group (OG) dataset belongs
to affiliation networks, which contains the membership of
actors in groups. Each actor can be regarded as a vertex
while the group refers to a hyperedge. We implement the
following four hypergraph analysis algorithms on Hyraph.
PageRank can compute the page rank for vertices (hyper-
edges) based on their memberships in different hyperedges
(vertices). Random Walks can rank vertices and hyper-
edges,which updates the value of each vertex (hyperedge)
based on its incident hyperedges (vertices). Label Propa-
gation on a hypergraph can be used to find communities.
Each vertex (hyperedge) updates its label to the label that
the largest number of its incident hyperedges (vertices)
have. Connected Components is to find the connected
components where each vertex and hyperedge updates its
id to the largest id that it receives. Note that the dynamic
activation function is always enabled to prevent unchanged
vertices/hyperedges from sending redundant messages. In
addition, we run 30 iterations for all algorithms and then
analyze the runtime performance. Based on our tests, con-
nected components can quickly converge in advance. We
then only count the runtime of the valid iterations. For other
algorithms which converge slowly, a majority of computa-
tions can be completed (i.e., most vertices and hyperedges
have been involved in computations) in 30 iterations, which
can also validate the effectiveness of our proposals. Some ex-
isting works likeMESH also employ the similar test policy.
Baseline solutions. We run the above hypergraph analysis
algorithms on Hyraph (denoted by IG) and compare them
with counterparts running on HyperX [7] (denoted by HX).
We also compare Hyraph with the SE method (detailed in
Section 2.2) which is also implemented on top of Giraph.
We denote the SE method with hash partitioning [8] and
hMetis [34] by SE-Hash and SE-hMetis respectively. For
HX, we use an iterative partitioning algorithm LPP (10 by
the setting of the HyperX paper [7]).

6.2 Features of Intersection Graphs
Tab.3 shows the size of the intersection graphs. Compared
with the information of bipartite graphs in Tab.2, we can see

 0

1

2

3

4

5

6

RE FR DB OG

#
O

u
tE

d
g

e
(1

0
7
)

dataset

IG
SE(Hash)
SE(hMetis)

(a) Number of outgoing edges

 0

 1000

 2000

 3000

 4000

 5000

 6000

RE FR DB OG
X

D
is

k
 S

iz
e

(M
B

)

dataset

IG
SE(Hash)
SE(hMetis)

(b) Disk Size
Fig. 7. Comparation of disk size and number of outgoing edges

that the average degree (H Avg and V Avg) and maximal
degree (H Max and V Max) of hyperedges and vertices in
the intersection graphs are consistently smaller than those in
the original hypergraphs.

Further, Fig.7 shows the amount of disk space and the
number of outgoing edges in both the bipartite graphs
and the intersection graphs for the different datasets where
SE (Hash) and SE (hMetis) denote the bipartite graphs
partitioned by Hash [8] and hMetis [34] respectively and
IG denotes the intersection graph. As Fig.7(a) shows, the
number of outgoing edges of the bipartite graphs (Hash)
and bipartite graph (hMetis) are the same. In comparison,
the numbers of outgoing edges in the intersection graphs are
67%, 60%, 66%, and 45% smaller on the Reuters, Friendster,
DBLP and Orkut-group datasets, respectively. Although the
number of outgoing edges in the intersection graphs are
smaller, we also need to store the partition information for
each hyperedge and vertex in the intersection graphs, which
causes the disks occupied by the intersection graphs to be
slightly larger than the bipartite graphs (Hash), as shown in
Fig.7(b). For the RE, FR, DB and OG datasets, the occupied
disk space of intersection graphs is 18%, 19%, 21% and
8% larger. Bipartite graphs (hMetis) also need to store the
partition information, and hence require more disk spaces
than bipartite graphs (Hash).

The distribution of the outgoing edges on the 8 workers
is shown in Fig.8(a) where H1 to H8 represent the outgoing
edges from hyperedges to vertices on worker 1 to worker
8 and V1 to V8 represent the outgoing edges from vertices
to hyperedges on worker 1 to worker 8. We see that we
achieve a balanced distribution of outgoing edges. The
distribution of the number of hyperedges and vertices on the
8 workers is shown in Fig.8(b). These figures reveal that the
intersection graphs converted from different datasets have a
balanced distribution of hyperedges and vertices.

6.3 Runtime Evaluation
We compare IG with other approaches mainly over the
experimental indicators of partitioning time and executing
time. In the last part, we measure the scalability of IG. Note
that the partitioning time of IG contains the total time of
the intersection graphs construction in Sec.4. We set the
thresholds of hyperedges, vertices and their outgoing edges

1.http://konect.uni-koblenz.de/networks/reuters
2.https://snap.stanford.edu/data/com-Friendster.html
3.http://dblp.uni-trier.de/xml
4.http://socialnetworks.mpi-sws.org/data-imc2007.html

Authorized licensed use limited to: Ocean University of China. Downloaded on September 28,2020 at 06:26:38 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3022014, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XXX, XXX 2018 12

 0

5

10

15

20

25

RE FR DB OG

#
O

u
tE

d
g

e
(1

0
6
)

dataset

H1
H2
H3
H4
H5
H6
H7
H8

V1
V2
V3
V4
V5
V6
V7
V8

(a) Outgoing Edges

 0

5

10

15

RE FR DB OG

#
H

/V
(1

0
5
)

dataset

H1
H2
H3
H4
H5
H6
H7
H8

V1
V2
V3
V4
V5
V6
V7
V8

(b) Hyperedges/vertices
Fig. 8. Distribution of outgoing edges and hyperedges/vertices

 0

 200

 400

 600

 800

 1000

 1200

 1400

20 40 60 80

T
im

e
(s

)

Sample(%)

Partitioning
Executing
Total

(a) OG

 0

 50

 100

 150

 200

30 50 70 90

T
im

e
(s

)

Sample(%)

Partitioning
Executing
Total

(b) RE
Fig. 9. Time under different sample ratios

as the total number of them divided by the worker number,
which can achieve excellent communication-reduction and
acceptable load balance.

We run Pagerank on Orkut-group and Reuters to esti-
mate how the pruning rate affects the effect of the inter-
section graphs. We select the pruning rate by analyzing the
number of the remaining samples. We select the correspond-
ing pruning rates nearby the remaining samples of 25%,
45%, 65%, 85%. As shown in Fig.9, with the sampling rate
increasing, the executing time goes down and the partition-
ing time rises gradually. Experimental results indicate that
the executing time is almost immutable when the sample
rate s>50%. As a result, s=50% often shows the optimal
total time, which corresponds to 0.2× average degree for the
two datasets. For the other two datasets, since the average
degree is small, the optimal results appear in the average
degree. For simplicity, we denote average degree as d. We
give an empirical criterion that the pruning rates of 0.2×
and 1× d are set for d >= 30 and d < 30 respectively, and
our experimental settings also follow this rule.

As can be seen from Fig.10, the executing time of IG is
consistently superior to that of SE (Hash), SE (hMetis) and
HyperX on all combinations of algorithms and datasets. In
the connected components algorithm, we achieve similar
performance with SE (hMetis), but the connected compo-
nent consumes much more partition time. Note that we label
the executing time of hMetis on OG with “x” because we fail
to get results within 24 hours. Specifically, SE works better
when using hash partitioning compared with hMetis when
running most algorithms on these datasets. This is because
hMetis is initially proposed for some classic problems like
VLSI design and sharding storage of distributed databases
where the complex relationship between the two kinds of
entities (vertices and hyperedges) are not considered, which
largely limits the communication gain for iterative computa-
tions. More importantly, hMetis achieves poor load balance

 0

 500

 1000

 1500

 2000

RE FR DB OG
X

E
la

p
s
e

d
 T

im
e

 (
s
e

c
)

dataset

IG
SE(Hash)
SE(hMetis)
HX

(a) PageRank

 0

 500

 1000

 1500

 2000

RE FR DB OG
X

E
la

p
s
e

d
 T

im
e

 (
s
e

c
)

dataset

IG
SE(Hash)
SE(hMetis)
HX

(b) Random Walks

 0

 500

 1000

 1500

 2000

RE FR DB OG
X

61
72

s

E
la

p
s
e

d
 T

im
e

 (
s
e

c
)

dataset

IG
SE(Hash)
SE(hMetis)
HX

(c) Label Propagation

 0

 100

 200

 300

 400

 500

 600

 700

 800

RE FR DB OG
X

E
la

p
s
e

d
 T

im
e

 (
s
e

c
)

dataset

IG
SE(Hash)
SE(hMetis)
HX

(d) Connected Components
Fig. 10. Executing time

for hypergraphs due to converting as many as possible
remote messages to the local ones, which generates waiting
costs and then offsets the communication gain. On RE, con-
sidering executing time, IG is 21.5%∼37.0% faster than that
of SE (Hash), 6.6%∼50.2% faster than that of SE (hMetis) and
73.0%∼84.6% faster than that of HX. On FR, the improve-
ments are 19.0%∼28.0%, 24.3%∼30.4% and 82.4%∼92.5%,
respectively. On DB, we still achieve performance gain by
14.4%∼18.6%, 18.7%∼20.9% and 55.6%∼86.0% respectively.
The exception is that for the connected components algorith-
m, SE (hMetis) achieves a comparable result with IG. Finally,
on OG, the executing time of IG is 38.9%∼42.5% less than
that of SE (Hash), and 69.7%∼91.1% less than that of HX.

Fig.11(a) describes the partitioning time of IG, SE (h-
Metis) and HX, while we omit that of SE (Hash) since it does
not require additional partition. Fig.11(b) reveals the result
of total time on all of the four datasets with Pagerank for the
three existing approaches and our IG. With the limitation of
space, we just show the results of PageRank, and others
have the similar results. The experiments demonstrate that
our method shows the best performance on all datasets.
Even for the end-to-end performance with partitioning and
executing times, we can still produce the comparable effect
with the SE-Hash method. More importantly, our IG tends to
be more effective over larger datasets with fewer workers.
This is principally because in this scenario more intensive
communication is incurred, while partitioning time does not
increase heavily with the pruning scheme.

Since the effectiveness of IG might be affected when
varying the number of workers, it is essential to run the
scalability test to explore the runtime change pattern. We
run PageRank and Connected Components on datasets OG
and RE starting with 8 workers and 1 worker respectively.
The worker number settings are the least requirements
by the corresponding datasets, so as to normally perform
iterative computations [49]. Fig.12 shows experiments on
the scalability of IG. We can see that with the increase of
the number of workers, the efficiency of IG could degrade,

Authorized licensed use limited to: Ocean University of China. Downloaded on September 28,2020 at 06:26:38 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3022014, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XXX, XXX 2018 13

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

RE FR DB OG

>2
4h

30
71

s

E
la

p
s
e

d
 T

im
e

 (
s
e

c
)

dataset

IG
SE(hMetis)
HX

(a) Partitioning Time

 0

 500

 1000

 1500

 2000

 2500

RE FR DB OG
X

48
14

s

E
la

p
s
e

d
 T

im
e

 (
s
e

c
)

dataset

IG
SE(Hash)
SE(hMetis)
HX

(b) Total Time
Fig. 11. Partitioning time and total time

 0

 100

 200

 300

 400

 500

 600

8 9 10 11 12

E
la

p
s
e

d
 T

im
e

(s
)

Number of Workers

PR
CC

(a) Scablability on OG

 0

 100

 200

 300

 400

 500

 600

1 3 5 7 9

E
la

p
s
e

d
 T

im
e

(s
)

Number of Workers

PR
CC

(b) Scablability on RE
Fig. 12. Scalability

since it reduces the chance of intersection. Consequently,
under the condition that the number of workers can meet
the execution, fewer workers make the intersection graph
gain more performance.

7 CONCLUSION

In this paper, we observe the symmetry of the hypergraph
structure and propose to compute intersection graphs based
on hyperedges and vertices, which enables hypergraph be-
ing partitioned with fewer outgoing edges across partitions.
Accordingly, we design a hypergraph partitioning algorithm
and an iterative distributed hypergraph processing frame-
work named Hyraph. Experiments on real datasets show
that Hyraph outperforms state-of-the-art frameworks.

8 ACKNOLEDGEMENT

This work is supported by the National Key R&D Program
of China (2018YFB1003404) and the National Natural Sci-
ence Foundation of China (61872070 and 61902366).

REFERENCES

[1] Klessius Berlt, Edleno Silva de Moura, André Luiz da Costa Car-
valho, Marco Cristo, Nivio Ziviani, and Thierson Couto. A hyper-
graph model for computing page reputation on web collections.
XXII Simpsio Brasileiro De Banco De Dados, pages 35–49, 2007.

[2] Jiajun Bu, Shulong Tan, Chun Chen, Can Wang, Hao Wu, Lijun
Zhang, and Xiaofei He. Music recommendation by unified hyper-
graph:combining social media information and music content. In
ACM MM, pages 391–400, 2010.

[3] Jianhang Gao, Qing Zhao, Wei Ren, Ananthram Swami, Ram
Ramanathan, and Amotz Bar-Noy. Dynamic shortest path algo-
rithms for hypergraphs. IEEE/ACM Transactions on Networking,
23(6):1805–1817, 2012.

[4] Nivethitha Somu, M. R. Gauthama Raman, Kirthivasan Kannan,
and V. S. Shankar Sriram. Hypergraph based feature selection
technique for medical diagnosis. Journal of Medical Systems,
40(11):239, 2016.

[5] Shulong Tan, Ziyu Guan, Deng Cai, Xuzhen Qin, Jiajun Bu, and
Chun Chen. Mapping users across networks by manifold align-
ment on hypergraph. In AAAI, pages 159–165, 2014.

[6] Jin Huang, Rui Zhang, and J. X. Yu. Scalable hypergraph learning
and processing. In ICDM, pages 775–780, 2015.

[7] Wenkai Jiang, Jianzhong Qi, Jeffrey Xu Yu, Jin Huang, and Rui
Zhang. Hyperx: A scalable hypergraph framework. IEEE Transac-
tions on Knowledge and Data Engineering, 31(5):909–922, 2019.

[8] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis,
and Sambavi Muthukrishnan. One trillion edges: graph process-
ing at facebook-scale. PVLDB, 8(12):1804–1815, 2015.

[9] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C.
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski.
Pregel:a system for large-scale graph processing. In SIGMOD,
pages 135–146, 2010.

[10] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish
Tatikonda, and John McPherson. From ”think like a vertex” to
”think like a graph”. PVLDB, 7(3):193–204, 2013.

[11] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and
Carlos Guestrin. Powergraph: distributed graph-parallel compu-
tation on natural graphs. In OSDI, pages 17–30, 2012.

[12] Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. Maiter:
An asynchronous graph processing framework for delta-based
accumulative iterative computation. IEEE Transactions on Parallel
and Distributed Systems, 25(8):2091–2100, 2014.

[13] Minyang Han and Khuzaima Daudjee. Giraph unchained: Barri-
erless asynchronous parallel execution in pregel-like graph pro-
cessing systems. PVLDB, 8(9):950–961, 2015.

[14] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream:
edge-centric graph processing using streaming partitions. In
SOSP, pages 472–488, 2013.

[15] Zhigang Wang, Yu Gu, Yubin Bao, Ge Yu, and Jeffrey Xu Yu.
Hybrid pulling/pushing for i/o-efficient distributed and iterative
graph computing. In SIGMOD, pages 479–494, 2016.

[16] Peng Sun, Yonggang Wen, Ta Nguyen Binh Duong, and Xiaokui
Xiao. Graphh: High performance big graph analytics in small
clusters. In IEEE International Conference on Cluster Computing,
pages 256–266, 2017.

[17] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel
Crankshaw, Michael J. Franklin, and Ion Stoica. Graphx: Graph
processing in a distributed dataflow framework. In OSDI, pages
599–613, 2014.

[18] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker,
and Ion Stoica. Resilient distributed datasets: a fault-tolerant
abstraction for in-memory cluster computing. In NSDI, pages 2–2,
2012.

[19] U. Kang, Hanghang Tong, Jimeng Sun, Ching-Yung Lin, and
Christos Faloutsos. GBASE: a scalable and general graph man-
agement system. In KDD, pages 1091–1099, 2011.

[20] Narayanan Sundaram, Nadathur Satish, Md. Mostofa Ali Patwary,
Subramanya Dulloor, Michael J. Anderson, Satya Gautam Vadla-
mudi, Dipankar Das, and Pradeep Dubey. Graphmat: high perfor-
mance graph analytics made productive. PVLDB, 8(11):1214–1225,
2015.

[21] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong
Ma. Gemini: A computation-centric distributed graph processing
system. In OSDI, pages 301–316, 2016.

[22] Keval Vora, Rajiv Gupta, and Guoqing (Harry) Xu. Kickstarter:
Fast and accurate computations on streaming graphs via trimmed
approximations. In ASPLOS, pages 237–251, 2017.

[23] Mugilan Mariappan and Keval Vora. Graphbolt: Dependency-
driven synchronous processing of streaming graphs. In EuroSys,
pages 25:1–25:16, 2019.

[24] Benjamin Heintz, Rankyung Hong, Shivangi Singh, Gaurav Khan-
delwal, Corey Tesdahl, and Abhishek Chandra. MESH: A flexible
distributed hypergraph processing system. In IC2E, pages 12–22,
2019.

[25] Julian Shun. Practical parallel hypergraph algorithms. In PPoPP,
pages 232–249, 2020.

[26] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learn-
ing with hypergraphs: clustering, classification, and embedding.
In NIPS, pages 1601–1608, 2006.

[27] George Karypis and Vipin Kumar. Multilevel k-way partition-
ing scheme for irregular graphs. J. Parallel Distributed Comput.,
48(1):96–129, 1998.

Authorized licensed use limited to: Ocean University of China. Downloaded on September 28,2020 at 06:26:38 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3022014, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XXX, XXX 2018 14

[28] George M. Slota, Kamesh Madduri, and Sivasankaran Rajaman-
ickam. Complex network partitioning using label propagation.
SIAM J. Scientific Computing, 38(5), 2016.

[29] George Karypis and Vipin Kumar. A parallel algorithm for mul-
tilevel graph partitioning and sparse matrix ordering. J. Parallel
Distributed Comput., 48(1):71–95, 1998.

[30] George M. Slota, Sivasankaran Rajamanickam, Karen D. Devine,
and Kamesh Madduri. Partitioning trillion-edge graphs in min-
utes. In IPDPS, pages 646–655, 2017.

[31] Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning
for large distributed graphs. In Qiang Yang, Deepak Agarwal, and
Jian Pei, editors, SIGKDD, pages 1222–1230. ACM, 2012.

[32] Charalampos E. Tsourakakis, Christos Gkantsidis, Bozidar
Radunovic, and Milan Vojnovic. FENNEL: streaming graph parti-
tioning for massive scale graphs. In WSDM, pages 333–342, 2014.

[33] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. Powerlyra:
differentiated graph computation and partitioning on skewed
graphs. In EuroSys, pages 1:1–1:15, 2015.

[34] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi
Shekhar. Multilevel hypergraph partitioning: applications in vlsi
domain. IEEE Transactions on Very Large Scale Integration Systems,
7(1):69–79, 1999.

[35] Hypergraph-Partitioning-Based Decomposition for Parallel
Sparse-Matrix Vector Multiplication. Hypergraph-partitioning-
based decomposition for parallel sparse-matrix vector
multiplication. IEEE Transactions on Parallel & Distributed
Systems, 10(7):673–693, 1999.

[36] Brendan Vastenhouw and Rob H. Bisseling. R.h.: A two-
dimensional data distribution method for parallel sparse matrix-
vector multiplication. Siam Review, 47(1):67–95, 2005.

[37] Aleksandar Trifunovic and William J. Knottenbelt. Par kway 2.0:
A parallel multilevel hypergraph partitioning tool. In Lecture notes
in computer science, pages 789–800, 2004.

[38] Karen D. Devine, Erik G. Boman, Robert T. Heaphy, Rob H. Bis-
seling, and Ümit V. Çatalyürek. Parallel hypergraph partitioning
for scientific computing. In International Conference on Parallel and
Distributed Processing, page 10, 2006.

[39] R. Oguz Selvitopi, Ata Turk, and Cevdet Aykanat. Replicated
partitioning for undirected hypergraphs. Journal of Parallel &
Distributed Computing, 72(4):547–563, 2012.

[40] Mehmet Deveci, Kamer Kaya, Bora Uçar, and Ümit V. Çatalyürek.
Hypergraph partitioning for multiple communication cost metrics:
Model and methods. Journal of Parallel & Distributed Computing,
77:69–83, 2015.

[41] Ata Turk, R. Oguz Selvitopi, Hakan Ferhatosmanoglu, and Cevdet
Aykanat. Temporal workload-aware replicated partitioning for
social networks. TKDE, 26(11):2832–2845, 2014.

[42] Yishu Wang, Ye Yuan, Yuliang Ma, and Guoren Wang. Time-
dependent graphs: Definitions, applications, and algorithms. Data
Science and Engineering, 4(4):352–366, 2019.

[43] Kirk Schloegel, George Karypis, and Vipin Kumar. Multilevel
diffusion schemes for repartitioning of adaptive meshes. J. Parallel
Distributed Comput., 47(2):109–124, 1997.

[44] Daniel Nicoara, Shahin Kamali, Khuzaima Daudjee, and Lei Chen.
Hermes: Dynamic partitioning for distributed social network
graph databases. In EDBT, pages 25–36, 2015.

[45] Wenfei Fan, Muyang Liu, Chao Tian, Ruiqi Xu, and Jingren
Zhou. Incrementalization of graph partitioning algorithms. VLDB,
13(8):1261–1274, 2020.

[46] Yu Zhang, Xiaofei Liao, Hai Jin, Lin Gu, Ligang He, Bingsheng
He, and Haikun Liu. Cgraph: A correlations-aware approach
for efficient concurrent iterative graph processing. In Haryadi S.
Gunawi and Benjamin Reed, editors, ATC, pages 441–452.

[47] Jilong Xue, Zhi Yang, Shian Hou, and Yafei Dai. Processing
concurrent graph analytics with decoupled computation model.
IEEE Trans. Computers, 66(5):876–890, 2017.

[48] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson,
Carlos Guestrin, and Joseph M. Hellerstein. Distributed graphlab:
A framework for machine learning in the cloud. Proc. VLDB
Endow., 5(8):716–727, 2012.

[49] Chang Zhou, Jun Gao, Binbin Sun, and Jeffrey Xu Yu. Mocgraph:
scalable distributed graph processing using message online com-
puting. PVLDB, 8(4):377–388, 2014.

Yu Gu received the PhD degree in computer
software and theory from Northeastern Univer-
sity, China, in 2010. Currently, he is a professor
and the PhD supervisor at Northeastern Univer-
sity, China. His current research interests include
big data analysis, graph data management and
spatial data management. He is a senior mem-
ber of the China Computer Federation (CCF).

Kaiqiang Yu received the master degree in com-
puter software and theory from Northeastern U-
niversity, China, in 2019. His current research
interests include big data analysis and graph
data management.

Zhen Song received the master degree in com-
puter software and theory from Northeastern U-
niversity, China, in 2019. He is a Ph.D candidate
in Northeastern University, China. His current re-
search interests include distributed graph com-
putation and distributed machine learning.

Jianzhong Qi received his Ph.D degree from
The University of Melbourne in 2014. He is a
lecturer in the School of Computing and Infor-
mation Systems at the University of Melbourne.
His research interests include spatio-temporal
databases and natural language processing.

Zhigang Wang received the PhD degree in
computer software and theory from Northeast-
ern University, China, in 2018. He is currently
a lecturer in the College of Information Science
and Engineering, Ocean University of China. He
has been a visiting PhD student in Universi-
ty of Massachusetts Amherst during December
2014 to December 2016. His research interests
include cloud computing, distributed graph pro-
cessing and machine learning.

Ge Yu received the PhD degree in computer
science from Kyushu University of Japan, in
1996. He is currently a professor and the PhD
supervisor at Northeastern University of China.
His research interests include distributed and
parallel database, OLAP and data warehousing,
data integration, graph data management, etc.
He is a member of the IEEE Computer Society,
IEEE, ACM, and a Fellow of the China Computer
Federation (CCF).

Rui Zhang is a Professor in the School of Com-
puting and Information Systems at The Univer-
sity of Melbourne, Australia. He has won the
Future Fellowship awarded by Australian Re-
search Council in 2012, Chris Wallace Award
in 2015 and Google Faculty Research Award in
2017. His research interests are data mining and
databases, particularly in areas of spatial and
temporal data analytics, recommender systems
and data streams.

Authorized licensed use limited to: Ocean University of China. Downloaded on September 28,2020 at 06:26:38 UTC from IEEE Xplore. Restrictions apply.

