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Abstract—Myriad of machine learning (ML) algorithms refine model parameters iteratively. Existing synchronous data-parallel
frameworks can accelerate training with convergence guarantees. However, the pre-assigned workload-based synchronous design still
poses great challenges, since fast workers must wait for slow, straggling ones, especially in a heterogeneous computing cluster.
Asynchronous alternatives can bypass this performance bottleneck, but at expense of potentially losing convergence guarantees. This
article proposes a new time-based flexible synchronous parallel framework (FSP). It provides strict convergence analysis by
consistently updating parameters, as well as significant cost reduction by completely unleashing the power of fast workers. It identifies
the optimal synchronization frequency, by online balancing costs of parameters’ update and benefits brought by their freshness.
Besides the basic goal of keeping all workers fully CPU-utilized, FSP also aims to keep data spread over the cluster fully utilized, so that
they can contribute to convergence with equal opportunities. These proposals are all implemented in a prototype system Flegel, with
additional engineering optimizations for further performance enhancement and programming facilitation. Experiments demonstrate

that Flegel significantly outperforms recent studies.

Index Terms—Machine learning, distributed computation, synchronous parallel model, straggler, workload balance

1 INTRODUCTION

ACHINE learning (ML) algorithms are becoming building
blocks for numerous applications in the cyber world.
The main idea behind ML is to iteratively train already
observed data points for refining parameterized models, as
much as possible, such that the output models can accurately
work over other new data. Usually, an application-related
objective function is defined to measure the model accuracy,
and we say an algorithm converges if the function value or the
number of iterations meets some pre-set criteria.
Motivation. Owing to the massive observed data volume,
there is an imperative need for sound and effective ML

o Zhigang Wang, Yilei Tu, Ning Wang, Jie Nie, and Zhigiang Wei are with
the Faculty of Information Science and Engineering, Ocean University of
China, Qingdao, Shandong 266100, China. E-mail: {wangzhigang,
wangning8687, niejie, weizhiqiang)@ouc.edu.cn, tuyilei@stu.ouc.edu.cn.

o Lixin Gao is with the Department of Electrical and Computer Engineering,
University of Massachusetts Amherst, Amherst, MA 01003 USA.

E-mail: Igao@ecs.umass.edu.

o Yu Gu and Ge Yu are with the School of Computer Science and Engineer-
ing, Northeastern University, Shenyang, Liaoning 110819, China.
E-mail: {quyu, yuge)@mail.neu.edu.cn.

Manuscript received 7 June 2022; revised 15 November 2022; accepted 8
December 2022. Date of publication 13 December 2022; date of current version
27 December 2022.

This work was supported in part by the National Natural Science Foundation
of China under Grants 61902366 and U22A2068, in part by the Fundamental
Research Funds for the Central Universities under Grant 202042008, in part
by the National Key Research and Development Program of China under
Grant 2021YFF0704000, in part by the National Natural Science Foundation
of China under Grants 61902365 and 62072083, in part by National Science
Foundation under Grants CNS-1815412 and CNS-1908536, and in part by
the Graduate Professional Development Fund Project of Computer Depart-
ment of Ocean University of China under Grant CSZ52022004.
(Corresponding author: Ning Wang.)

Recommended for acceptance by M. Si.

Digital Object Identifier no. 10.1109/TPDS.2022.3228733

computations. Till now, conventional efforts have made signifi-
cant advancements, mainly including frequently refining
model parameters for gain enhancement [1], [2], [3], [4] and
parallelizing data training in a computing cluster for scalabil-
ity [5], [6], [7]. All of them feature contributions in synchronous
systems, where distributed workers (technically, processes or
threads) follow the Bulk Synchronous Parallel (BSP) design to
cooperate with each other, at a global barrier per iteration [8].
However, BSP still poses great challenges for efficiency,
because fast workers must wait for slow, straggling ones. Such
a negative impact is especially significant in heterogeneous
environments caused by many complex factors, including not
only the (static) different hardware configurations, but also the
(dynamic) skewed distribution of multi-tenant workloads,
usage of cheap yet transiently available computing resour-
ces [9], and non-deterministic disturbance of OS jitter and gar-
bage collection.

We evaluate the real impact using K-means [10] over
HIGGS (see Table 1) as an example. The job consists of 16
workers evenly scheduled onto 4 physical machines, followed
by another with only one worker running on some machine.
Then four workers of the first immediately become stragglers
due to multi-tenant resource contention. Compared with the
idle dedicated scenario, its runtime increases from 122secs
largely up to 1050secs, leading to the 7X runtime performance
degradation. On the other hand, when using transient resour-
ces, once a worker is revoked, we need to find a replacement
to deploy the software and re-load data. The startup latency is
roughly 1 minute even with the help of container images [11],
yielding up to 50% runtime loss (and even more because revo-
cation can happen at any time for any worker).

We are aware of many recent works on the straggler prob-
lem, but all are far from idle, like blocking data migration or
proactive data replication [12], [13], [14], which requires
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TABLE 1
Datasets Summary

Algorithms Datasets Points (P) Dimensions (D)
GMM PUF* 6,000,000 128
SUSY® 5,000,000 18
KMs/FCM MASS® 7,000,000 27
HIGGS’ 11,000,000 28
LR HIGGS — —
DET?® 6,739,534 116
NMF ML10M’ 69,877 10,681
ML25M ™ 162,540 5,000
CNN MNIST!! 60,000 28x28, 10 labels
SYN 120,000 28x28, 10 labels

“https:[/archive-beta.ics.uci.edu/ml/datasets[physical +unclonable+-functions
Shttps://archive-beta.ics.uci.edu/ml/datasets/susy
Shttp:/larchive.ics.uci.edu/ml/datasets HEPMASS
"http:/archive.ics.uci.edu/mi/datasets/HIGGS
Shttp:/larchive.ics.uci.edu/ml/datasets|
detection+-of-+iot+botnet+attacks+n+baiot
http://files.grouplens.org/datasets/movielens/ml-10m.zip

o http://files.grouplens.org/datasets/movielens/ml-25m.zip
"http:/lyann.lecun.com/exdb/mnist/

additional network bandwidth and/or memory footprints;
relaxed synchronous constraint without strict convergence
guarantee, including confined synchronous [15], [16], [17],
bounded stale synchronous [18], [19], [20] and asynchro-
nous [21], [22], [23] parallel solutions, which cannot tolerate
persistent (static) stragglers [24]; and tunable workload assign-
ment customized for workers for the upcoming iteration [25],
[26], [27], that still suffers from temporarily occurred
(dynamic) stragglers within the current iteration.

Hence, a naturally desirable goal for ML algorithms is to
pursue a new parallel model that (1) can maximally unleash
the computational power of fast workers by spending time
doing more useful computations instead of waiting for strag-
glers at the synchronous barrier; (2) can uniformly solve the
static persistent and the dynamic transient straggler problem;
(3) enjoys the strict convergence guarantee like BSP; and (4) is
lightweight—without large additional resource requirements.

Problem Analysis. Many existing works have proved that a
global synchronous barrier is essentially necessary for conver-
gence guarantee [25], [26], [27]. However, the currently used
barrier mechanism cannot cope with our first two require-
ments. This is because it follows a pre-defined synchronous
parallel design where within each iteration, workloads mea-
sured by the number of training data points, are scheduled
across workers prior to launching real computations. The syn-
chronous barrier is passively performed if and only if every
worker has already reached the pre-defined barrier location,
i.e., completing pre-assigned workloads. Since workloads
cannot be changed at runtime, the execution time cost is sig-
nificantly sensitive to static and/or dynamic heterogeneous
factors. Fast workers thereby block themselves at the barrier.

Our Contributions. In this paper, we explore a path to such a
target system with a series of research and engineering efforts.

We first challenge the conventional wisdom that ML with
good convergence have to be parallelized using the pre-
assigned workload-based BSP framework. We now give a new
time-based Flexible Synchronous Parallel (FSP) alternative.

FSP still follows the design of synchronous parameter update
at the global barrier, so as to ensure that all workers can always
use consistent parameters for local training. That helps us for-
mally prove the convergence. However, no workload is pre-
assigned, and hence, no barrier location is pre-established.
Instead, FSP enables an independent coordinator to actively
initiate a barrier to synchronize all workers whenever neces-
sary. Once receiving such a notification, a worker will pause
right after atomically training a single data point, and then
immediately commit local intermediate results to refine global
parameters. Since the cost of an atomic operation is tiny, all
workers can pause at nearly the same time instance, even some
of which are persistent or transient stragglers.

Pioneering studies reveal that frequently initiating bar-
riers can keep parameters fresh and hence improve training
quality [1], [4]. While, although FSP removes waiting time,
its synchronization is still not free. During the iterative
training, dynamically identifying a proper synchronization
frequency (interval) can strike a good balance between costs
and benefits. The flexibility of FSP, however, forces pro-
grammers to either blindly select an interval or experience a
long learning curve to understand the internals of underly-
ing engines. Existing dynamic barrier efforts (namely batch
size in BSP) [2], [3] cannot work very well in FSP, since they
ignore the impact of stragglers on runtime. To gain overall
success while insulating programmers from the tedious
low-level details, we design a multi-stage adjusting compo-
nent to adaptively seek optimal intervals. Within one stage,
we linearly simulate the changing trend of the objective
function value, for recommending an interval, and hold it
steady to avoid over-reaction or oscillation. The fitting error
can be self-corrected by dividing training process into mul-
tiple stages and then re-performing recommendation.

Typically, training data are evenly distributed across the
computing cluster, as workers’ runtime states are usually
unavailable before iterations. Together with the fact that FSP
keeps all workers fully CPU-utilized, data on fast workers are
inevitably traversed more times than on stragglers, yielding
biased influence on parameters and even making the ML
model overfit to the former. Excessive traversing also weak-
ens the average convergence contribution of a single pass,
leading to the low cost-benefit ratio. We solve this data under-
utilization problem by a traditional yet effective manner, i.e.,
dynamically migrating data from stragglers to fast workers.
But the differences against prior load balance works [12], [14]
are twofold. First, our goal is, in remaining iterations, to make
migrated lazy data catch up with excessive traversed data, in
terms of the traversing times, rather than equalizing the run-
time of workers (has already guaranteed by the basic FSP).
We thereby design totally different policies to smartly select
data and decide migration timing, to dynamically compen-
sate the data on stragglers for their missing traversal times.
Second, since FSP has decoupled barriers and local training
workloads, we can give a bi-directional scheduling policy to
overlap migration streaming and local training streaming.
Data thereby can be migrated asynchronously across itera-
tions to completely hide the migration cost.

In a nutshell, we make the following contributions.

e  Proactive flexible synchronous parallel framework FSP,
which keeps workers fully CPU-utilized by time-
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based barriers, to handle persistent and transient
stragglers, and guarantees convergence by consistent
parameter update.

o Adaptive synchronization interval optimization. By multi-
stage self-corrected linear fit, its robustness adjustor
can quickly identify such a hyper-parameter and
smartly react to stragglers, without any runtime-sensi-
tive input.

o Lightweight dynamic workload balance with a new goal
of keeping all data evenly utilized and hence equally
contributing to convergence. It asynchronously
migrates data to avoid blocking local training.

e Prototype system Flegel. It exposes uniform APIs and
multiple convergence criterions to end-users, for eas-
ily programming various ML algorithms. Because
stragglers also react to the coordinator slowly, Flegel
gives a semi-centralized coordination design to miti-
gate the delay impact, by allowing a straggler to
actively react in advance.

We state that the FSP scheme has been introduced in our
early work [28], but only for partial ML algorithms. Now we
generalize it to common ML computations. Besides, although
the early built-in binary searching based adjustor and its vari-
ant [24], [28] can give an interval recommendation by multiple
attempts, we now propose a multi-stage linear fit alternative
with strong robustness and the capability of quickly seeking
optimization. We particularly extend FSP by adding light-
weight load balance with new metrics and migration techni-
ques. Engineering efforts like semi-centralized coordination
and multiple convergence criterions are also newly proposed.
All experiments are re-organized and re-tested, including
more ML algorithms on a broad spectrum of real datasets, to
show the generality and advantage of Flegel.

Paper Organization. Below, Section 2 gives a background
introduction. Section 3 presents FSP with interval seeking
optimization. Section 4 introduces dynamic load balance.
Section 5 discusses the Flegel system. Section 6 reports eval-
uation results. Section 7 highlights related works and Sec-
tion 8 finally concludes this work.

2 PRELIMINARIES

This section briefly reviews ML training strategies. Without
loss of generality, we use Gradient Descent (GD) [29] and
Expectation Maximization (EM) [30] as representatives to
demonstrate our contributions, but others like Coordinate
Descent [31], Model Average [32], BUMF [33] and
ADMM [34], are also applicable.

Let X be an observed value of some random variable,
typically consisting of n independent data points. X can be
decomposed as {Xj,...,X,}. The general goal of ML is to
refine a model with parameter 6 by iterating over input data
X, so as to perform future predictions over new data. The
refining quality (model accuracy) is measured by the objec-
tive function f(6).

2.1 Gradient Descent

Gradient Descent (GD) is the most widely used training
strategy. It computes function-derivative-based gradients
by training data, in order to give the most-right value-
descent direction for f(6). Here, f(6)=23"" F;(X;;6), and

VX, € X, Fi(X;;0) indicates the loss w.r.t. X;. GD computa-
tions consist of two procedures at each iteration, i.e., com-
puting gradient VF; and then updating parameter 6. The
former can be a stochastic gradient trained by a single data
point (SGD) or the average by the whole (Full-batch). Eq. (1)
gives another Mini-batch choice [4] to refine parameter 6"
at the ¢-th iteration. It samples a few of points between two
consecutive iterations/barriers to form the mini-batch set B
for averaging gradients. That is a better compromise
between noise incurred by SGD, and the inefficiency of
broadcasting fresh 6 in full-batch GD. Here « is a hyper-
parameter learning rate, which affects the model accuracy
and is beyond the scope of this paper

| B| Z VF,. 1)

X,eB

o) — glt=1) _

Logistic Regression (LR). We use LR to show how mini-batch
GD trains its model parameter 6. Each data point X;€X
contains r attributes with an additional boolean ground-
truth value Yis that iS, X7 = {AXV,7 y7} = {{J}il, Liy - - oy J}ir}, y7}
LR on X returns a function x, which predicts y; =1 based on
6 with probability

1

X)=—
x(Xs) 1+ exp(—X70)

The optimal § minimizes the loss function

i — Dlog (1 — x(X5))

and each dimension Gg) of 0 is refined by the related gradi-
ent

F(Xi;0) = (y — yilog x(Xi),

1 a
a0y,

o) = gl'~!) — L R(X;0 ) 1< k<

|B|XEB

2.2 Expectation Maximization

As one of the top 10 data mining algorithms, Expectation
Maximization (EM) can effectively train models with an
additional unobserved hidden variable Z. Z is associated
with X, and the range domain of each Z;€Z is {z, ..., z}.
Now we wish to find a maximum log likelihood estimate
f(0) for parameter 6.

EM solves this problem by alternately estimating expec-
tation of Z (called E-step) and maximizing marginal likeli-
hood for f(f) (called M-step), resembling the two
procedures in GD At the t-th iteration, given the Current
parameter o\~ E-step estimates a distribution @, " over

the range of Z w.r.t. every X; (full- batch) ie., Q< (z1)=

P(z|X;,6007Y), s.t. > Q" (2,)=1and Q" (z;) >0. Then M-
step updates 6" to the 6 that can maximize f6)=
S 1EQ(, y[log P(z, X;|0)], where P(zx, X;|0) indicates the
joint probability for Z; and X; based on 6, and E f)[]
denotes expectation w.r.t. Q found in E-step.

A mini-batch variant can also achieve prominent perfor-
mance, through training data from a subset BC X in E-
step [1], [10]. That generates two modifications. On one
hand, ¢’ is updated based on a new statistics vector s =
S f)(Zl,X) where s()(ZZ,X) is associated with
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QEO (z1) and can be easily computed the change As;. As a
result, even partial data are computed in E-step, by accumu-
lating related As;, we can incrementally update s*) and
hence correctly refine 6. On the other hand, the training goal
is equivalently re-defined as that both the E and the M steps
try to maximize, or at least increase a new objective function
shown in Eq. (2) [1], where H{(:) is the entropy of Q;

0) = ZFi(Qz,@
i=1

Fi(Qi,0) = Eg,[log P(z,2;0)] + H(Q:). )

), where

Eq. (3) finally shows the com utat1on flow of mini-batch
EM, at the ¢-th iteration. Here Q is set to the @; that maxi-
mizes F;(Q;,0), given by Q ( w) = P (26| X, 9(’571)).

- Step Choose B to be updated, and VX;€B :
Set 0z, X;)= Bgols Dz, X))

Set As.” )(ZZ,X) “(Z, X))
Commit every Asi >, X; € B.

Wait for newly updated 6.

M — step : Set s) =50+ A5 X, € B.
Set 0% to the 0 that mazimizes F(Q,0)
based on s,

Broadcast 6",

3)

K-Means Example. As a simple EM application in clustering,
K-means aims to partition n observed data points in X into [
clusters 6={6,...,6;} so as to minimize f(0)=
Zé’:l inegj || Xi — mo,ll, where pg, :ﬁj‘zxie% X, is the cen-
troid of 0. The range of Z; is {1, 2, .. ., 1}, indicating to which
of I clusters a given observed X is supposed to be assigned.
E-step assigns X; to the nearest cluster 6; for ke[l l]:
Q< >(z;\) =1, if z,=7; and 0 otherwise. The statistics s*)
includes two vectors with [-dimensions: S with S;=
>y, co, Xi, and C with Cj= |6;]. Suppose that X; is moved
from 6' to 6. S and C are updated incrementally by: S;=
S; Xl,S/fS —I—Xl,C =C;—1, Cy=Cjy+1. In M-step, 6, is
updated by u4, = p

2.3 Distributed Machine Learning

For better scalability, myriad of today’s ML systems employ
the underlying parameter-server framework [22] where data
points X are distributed across multiple workers for parallel
training (also called data-parallelism), and the model parame-
ter 6 is kept on logical servers (physically may also be data
workers). At the global barrier, gradients in GD or incre-
mental changes in EM are aggregated from workers to serv-
ers, to refine parameters. Such a design ensures that all
workers can see consistent parameters, which provides con-
vergence guarantee. But it suffers from expensive waiting
costs caused by stragglers, —which our new flexible syn-
chronous parallel framework can reduce.

3 FLEXIBLE SYNCHRONOUS PARALLEL

We now introduce our Flexible Synchronous Parallel (FSP)
framework. We first present its overview design (Section 3.1),

Coordinator

Coordinator nesgd initiate a barrier

pre-defined P>

fa

barrier data point

Worker_1 Worker_2 Worker_3 Worker_1 Worker_2 Worker_3

(a) Pre-defined barrier (b) Flexible barrier

Fig. 1. lllustration of performing a global barrier under (a) existing BSP
and (b) new FSP. The dashed line in (b) indicates a flexible barrier.
Besides, the solid arrow line in (a) and (b) indicates committing local
training results, like VF in GD and As in EM, to the coordinator.

followed by a theoretical guarantee on convergence (Sec-
tion 3.2) and how to seek an optimal synchronization interval
(Section 3.3).

3.1 Overview Design

FSP is designed to reduce the waiting time in traditional
pre-defined bulk synchronous parallel (BSP) frameworks.
Under FSP, fast workers can perform more useful computa-
tions to accelerate convergence, while the strict convergence
feature as provided by BSP, can still be guaranteed.

The waiting time in BSP is mainly caused by its built-in
pre-defined barriers. Before running a ML iteration under
BSP, all workers pre-define barrier locations by assigning
workloads, like processing every local data point (full-
batch) or some block B (mini-batch). A global barrier is
passively formed when all workers have completed such
workloads, which is simple but very sensitive to stragglers.
Suppose that three workers are used. As shown in Fig. 1a,
they possibly reach their individual pre-defined barriers at
different speeds. The coordinator cannot update parameters
or broadcast their new version, until it receives all local
training results. Fast workers like Worker_1 thereby block
themselves to wait for stragglers like Worker_2.

FSP replaces the pre-defined barrier with a new flexible
mechanism. Now the coordinator can actively initiate a bar-
rier by broadcasting a signal. Once receiving the signal, a
worker immediately commits local training results right
after computing the current data point, no matter how
many have been processed since the last barrier. Data points
processed at the ¢-th iteration are encapsulated into the sub-
set/mini-batch B®). Its size clearly indicates the workloads
per iteration. Different from the pre-defined B in Egs. (1)
and (3) under BSP, B varies with iterations, because a new
flexible barrier can be initiated at any time. As shown in
Fig. 1b, workers first committing results, such as Worker_1,
only wait for stragglers, such as Worker_2, to process a sin-
gle data point at most. Local results are abstract summations
collected from individually processed data points, like
> AF; in GD and ) As; in EM, which can be maintained in
an incremental manner. Hence, the coordinator can quickly
complete a synchronization operation. As a result, fast
workers spend more time performing computations,
instead of waiting for stragglers. Also, the lightweight syn-
chronization barrier can be initiated more frequently so that
more fresh parameters are visible for workers. Two advan-
tages contribute to boosting the performance.
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On the other hand, each worker under FSP uses a round-
robin policy to schedule local training operations among
iterations, so that every data point can be evenly sampled
during computations. Like BSP, here workers also share the
same parameters. This is because the coordinator will not
refine parameters until all workers have already committed
their local results at the barrier. Training on workers, in
return, can continue only when receiving new parameters
from the coordinator. The consistent parameter view guar-
antees convergence (see Section 3.2).

Last but not least, assume that a worker begins to process
a single data point right before receiving the barrier signal.
It can make a smart decision about whether or not to con-
tinue the local training, so as to timely respond to the signal.
In most cases, computing one data point leads to negligible
waiting costs. It is acceptable that the worker participates in
synchronization after completing the local operation. How-
ever, in some real-world applications, processing a single
data point is very time-consuming. For example, ML algo-
rithms in the global atmospheric model, need to extract fea-
tures from high-resolution images. Such images usually
have much more pixels than those used in regular classifica-
tion tasks (e.g., 3600x2400 in Ref. [35] versus 28x28 in
Table 1 in our experiments), which largely increases the
time complexity of processing a single image. Now the
worker should immediately abandon the operation. Other-
wise, other workers need to wait for a long while, which
wastes compute resources.

3.2 Convergence Analysis

The key advantage of FSP is that it can guarantee ML con-
vergence. We show the formal analysis in Theorems 1 and
2, respectively for the representative GD and EM training
strategies.

Theorem 1. GD-based ML algorithms under FSP converge.

Proof. Traditionally, the convergence of GD is analyzed
with assumptions that the objective function f is continu-
ously differentiable and c-strong convexity, and the gra-
dient function VF is L-Lipschitz continuous. We then
utilize existing analysis for proof, based on features of
FSP.

Recall that the mini-batch size | B| under FSP dynami-
cally varies with iterations, as a barrier can be arbitrarily
issued. Léon Bottou et al. prove that the convergence is
insensitive to | B| [36]. They show the expected optimality
gap between f(#') and the optimal f(6*) can be bounded
by the learning rate « and the constant scalars ¢ and L
(see Theorem 5.1), all of which are technically orthogonal
to FSP. On the other hand, FSP guarantees that all work-
ers can see consistent parameters, which eliminates any
possible error in the bounded optimality gap [18]. 0

Theorem 2. EM-based ML algorithms under FSP converge.

Proof. Convergence guarantee can be proved by showing
that EM computations monotonously increase the objec-
tive function value F(Q, 8) (Eq. (2)). Towards this end, we
prove that each EM iteration consisting of E-step and M-
step, either increases F'(Q, 6) or leaves it unchanged.

At the m-th 1terat10n from the Coordlnator view, M-step
maximizes F(Q™,00™)=3" | F(Q ( ™ gm)) through
changing 6™V to 9 ThlS update is based on the global
statistics s derived from the change of Q. In particular, if
X, isnot processed, we assume that its ); is left unchanged
(As;=0). Obviously, M-step can monotonously increase

F(Q.0).

From the j-th worker view, at the ¢;-th iteration, E-step

updates F; (Q(t it ,61)), and hence F(Q 6), by changing

Q " to Q U To prove E-step continuously increases

F(Q,0), we shall prove that the newly updated F; is
greater than, or at least equal to the value used in the last
M-step, as shown in Eq. (4).

F(Q™ 00y > F(Q™,60m) @

Based on the assumption in M-step, fof) = Q™. We
then re-write Eq. (4) in the following;:

F(Q,69) > FQ™,6) ®)
On the other hand, conditioned on 8%, we can maximize
Fi(Q™,61)) using a Lagrange multiplier [1], subject to
ZZkQ'n+l (z)=1 and Q"™ (z,)>0. At such a maxi-
mum, we have the unique solution that Q""" (z,)=

P(z|X;,60%)), and we indeed use it to initialize

QE"LH) (z1). Therefore,

F Q"™ 04)) > F(Q™,61)) (6)

K3

Because no worker can continue local computation
before receiving the new parameter 6, we can easily infer
that %) = 6™ Based on Eq. (6), we can establish the cor-
rectness of Eq. (5), and hence E-step also increases
F(Q,0). Together, F(Q,0) is monotonously increased as
desired. O

Neal et al. [1] have proved the strict convergence prop-
erty, i.e.,, monotonously increasing F'(Q),0) at each iteration,
for centralized EM algorithms. However, their proof ignores
the discussion on different versions of Q; and 6, because the
sequential model naturally ensures that subsequent opera-
tions can immediately see any update result. Differently,
Theorem 2 tells us that a global barrier is essentially
required in distributed environments. Otherwise, the com-
parlson result between F,L(Q( ), 6™) in Eq. (5) and

(Q(m ()} in Eq. (6) is non-deterministic. This is because
M-step focuses on maximizing the overall summation
F(Q,0), instead of a single F;(Q;,0). Our FSP framework
is thereby different from relaxed synchronous frame-
works [15], [18], [22].

3.3 Optimal Synchronous Interval
Although a flexible barrier can be initiated at any time with-
out compromising the convergence guarantee, the question
is that who can trigger it and when? Now we answer the
two key issues.

As an extreme case, given a big synchronous interval 7, it
is most likely that a worker has cycled through local data
before receiving a barrier signal. Since 6 is left unchanged
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Fig. 2. Optimal barrier interval under FSP.

within an iteration, computations in multiple full data tra-
versals are redundant, except the first. Therefore, to avoid
wasting compute resources, any worker already completed
a traversal pass, will immediately notify the coordinator for
synchronization.

Pioneering experience, however, tells us that frequent
synchronization with a relatively small 5, can make up-to-
date parameters visible, and then improve the subsequent
training quality, namely, making great progress for optimiz-
ing f(6) per iteration [1], [4]. While, the flexible barrier is
still not free, owing to network costs and the parameter
refinement delay. Such an 5 setting inevitably increases syn-
chronization costs, which decreases the quantity, i.e., itera-
tions executed within unit time. Clearly, it is very necessary
for coordinator to identify a proper interval, to hit a “sweet
spot” between quality and quantity.

Overall, the coordinator should actively play the trigger
role, and transfer the power to workers if 7 is too big. Next,
our focus is how to compute 7. The key is how to fully uti-
lize online statistics and offline knowledge. Below, we first
outline our early binary search based solution as a baseline,
and then give details of the new multi-stage fitting design.

Recursive Binary Searching. The main idea is to compare
the change of the objective function value f(6) within unit
time under the current interval 7 and a tentative smaller ¥,
respectively. Here X is the user-specified adjusting factor
and typically set to 2. As shown in Fig. 2a, n=1 takes effect
if the change Af w.r.t. 5 after some iteration, is smaller than
Af w.r.t. §, which is accumulated across the strictly subse-
quent A iterations. This is because the comparison result
implies that benefits from fine-grained synchronization out-
perform costs of additional (A—1) barriers, i.e., quality beats
quantity. The adjusting operation is recursively continued
until the result is reversed, like Af’ > Af”. Prior experi-
ments [37] reveal that the batch size that yields the best
speedup during initial iterations is roughly the optimal in the
whole. Hence, we also fix n unless the environment changes.

Note that Af and Af’ are computed from different train-
ing phases. To ensure a fair comparison and then analyze
the accurate impact of adjustment, our binary searching
assumes that f(0) strictly linearly varies with elapsed time.
However, such a strong assumption usually cannot hold
true in practice. The variation speed gradually degrades as
iterations proceed, because the model trends towards stabil-
ity. The natural degradation inevitably weakens the training
quality, although we collect Af and Af’ in adjacent itera-
tions. That generates a false positive comparison result
and hence early terminates adjustment. Based on our tests,

600
(b) Linear regression of f and g

1200 Wms t ty PR
(c) Multi-stage self-corrected linear fitting

binary searching only works at the very beginning of itera-
tions, because now the degradation is less significant. In
addltlon it needs log Lk adjustments from the initial mput
n” to the optimal »*. The complexity is so sensitive to 7" that
the valid adjusting window period is further shortened, if a
big input is given. Our early version uses a full-batch run-
time as n’; a variant optimizes its value with literature
researches [24], both of which prolong n° when stragglers
suddenly happen.

Multi-Stage Self-Corrected Linear Fitting. We now propose
a new robustness component to seek n*, with relaxed linear
assumption and input sensitivity.

The key insight is, by extensive tests on many ML algo-
rithms, although f against elapsed time ¢ does not follow a
linear trend in the entire training, the fitting error is largely
reduced in a short period. The top subfigure in Fig. 2b dem-
onstrates K-means as an example. An inflection point is
clearly observed at ¢t =1.8secs. The binary searching can be
easily terminated around this point, because of the sharp
degradation of training quality. However, observations in
the two separated stages 7)={0,1.8} and T,={1.8,15},
respectively follow a linear regression model. That moti-
vates us to seek n* separately. To further relax the input sen-
sitivity, we also replace the time-consuming recursive
searching with a fast cost-benefit estimation, as mathemati-
cally shown in Eq. (7). The main idea behind it is to maxi-
mize the optimization gain w.r.t. f in the valid training
time, by seeking the optimal n*. Let ¢ stand for the barrier
cost. In some linear fitting stage 7', the valid time is com-
puted by excluding the costs of total % barriers. Here, g(n)
is a quality function indicating the training progress within
unit time. Fortunately, as shown in middle and bottom sub-
figures in Fig. 2b, g also linearly varies with 1 within each
stage. Till now, as described in Fig. 2c, we can compute an
optimal interval 5 for each stage T;

T-¢- L) 9(n).

7
— )

max gain(n) = <

The next problem is how to reasonably divide stages.
Ideally, the total training time is predictable if the linear
regression of f on ¢ has R?=1. Given the current objective
value f., and the target fi,, it is (|feur— fiar|)/9(n). How-
ever, under multi-stage-division, the fitting error is just
reduced but still not zero. The accumulated errors across
iterations yield convergence delay, namely, the ML algo-
rithm does not converge as predicted. As shown in Fig. 2c,
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once such a delay is detected, we should enter into the next
stage and recompute another n* to correct fitting errors. By
continuously monitoring the training progress, we can
adaptively divide stages and hence self-correct errors.

We finally detail the estimation of g;(n) within the i-th
stage T;. Its linear fitting g;(n) =a;n+b; includes two hyper-

parameters, which requires two points (Af’<7l),77,) and
(%ﬁ“) ,Nix1) with different interval attempts for estima-

tion. Given 7;, through continuously running two iterations

starting from X, ff('“ indicates the training quality during
the valid elapsed time At;=2n,.! We then rollback to the
original starting location X; and train the same data again
with n;,,=2n; to get another point. Such a design clearly
overlaps training data used in estimation, and hence elimi-
nates any possibly skewed impact. Because 7; is usually
very small, we can tolerate the cost of redundant
computations.

4 LIGHTWEIGHT DYNAMIC WORKLOAD BALANCE

The basic FSP in Section 3 has guaranteed full utilization of
CPU resources. However, it might generate and exacerbate
the skewness of data traversals across workers, and finally
slow down convergence speed. Our solution is to dynami-
cally balance workloads, which has been well studied
but now we have a new goal and completely different
techniques.

4.1 Fromldle CPU to Idle Data

Before training, distributed ML often shuffles data points
among total w workers by random hash, so as to follow the
Independently Identical Distribution (IID) assumption. On
the other hand, owing to pre-assigned workloads, when ML
converges, BSP ensures data D; on each worker Worker_i
(W; for short) can be traversed exactly the same number of
passes pf, 1<i<w. Both of the two conditions guarantee
that workers can commit roughly equally-important local
results. For example, Vi# j, we can have the summation of
gradients in GD

v i
ko i
AFhNE E AFy,
k=1 X,eD; k=1X,eD

and accumulated changes in EM

Z Z Ash Z; Z Asﬁ.

k=1Xp€eD; k= thEDj

That is to say, they evenly contribute to parameter refine-
ment. However, as analyzed in Section 3.1, fast workers are
blocked at the pre-established barriers, and hence their
CPUs are idle.

Differently, workers under FSP make the best-efforts to
maximize their individual traversal passes. p} of fast worker
Wi is then greater than p; of straggler W;. The quantity gap
clearly destroys the second condition. Meanwhile, model
parameters inevitably overfit to data D;, as they are trained

1. n; is user-specified and set to 200 ms by default.

too often; that in turn reduces the quality like AF} or As}
from a single data point in D;. Compared against BSP, FSP
of course can accelerate convergence because W; does not
waste its compute power and then contributes more results.
However, the skewness in quantity and quality is newly
incurred as mentioned above, because of the relatively idle
data on stragglers (traversed with fewer times). In another
word, FSP shifts utilization skewness from CPU to data.
That opens up a new space for further performance
improvement.

Now we argue that the additional gain can be achieved,
if fast worker W, uses its extra power to train fewer-tra-
versed data D; on straggler W, rather than its own D;. This
is because quality from D, is more significant. A straightfor-
ward implementation is data migration. But different from
traditional works focusing on equalizing runtime in only
remaining iterations, now we aim to keep data equally-uti-
lized measured by p; ~p; (i# ), in the whole training pro-
cess. That means we should not only balance future passes,
but also compensate previously accumulated loss. We then
require a new fine-grained balance policy as described in
Section 4.2. Further, FSP decouples barrier locations and
local workloads, that enables us to flexibly migrate data in
an asynchronous manner, and even across iterations, as
shown in Section 4.3. This is different from existing blocking
policies where migration only happens within a single itera-
tion or at the barrier.

4.2 Fine-Grained Workload Balance

Before showing the detailed solution, we first formulate our
new balancing goal in Eq. (8). For simplification and effi-
ciency, we real-timely group homogeneous workers
{Wit,...,Wik,...} with the same statistics into a super
worker W;. The statistics include the number of currently
maintained data points n;;, training speed v, and the
already completed traversal passes p;;. ¥; has the same cor-
responding statistics N;, V;, and P,. When ML converges,
we say the training process is balanced if the difference
between the specific passes of any super worker and the
average of total K super workers, does not exceed a given
threshold e.

K *
L ShE

” % <e0<e<1 )

We then continuously monitor P; at each barrier and start
data migration once the threshold is exceeded. Now the
question is migrating how many data from selected sources
to targets. Note that we can estimate the remaining time 7'
with the same method used in Section 3.3, and then the
average passes %25‘:1 P until convergence. Both help us to
carefully calculate how many data should be migrated in-
to/out-from workers in every W;, so that P; and P; are defi-
nitely roughly equal, for any i # j. However, the predicted T’
might be inaccurate because of the non-linear variation of
f(6). Worse, our asynchronous across-iteration migration
(shown in Section 4.3) cannot guarantee that data on strag-
glers immediately enjoy the power of fast workers. We even
do not know when migration is completely done.
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To mitigate these problems, we propose the fine-grained
balance design with a real-time adjusting function. It evenly
splits T" into d parts and within each one, a peer-to-peer
migration policy is used to balance passes of paired super
workers. This gradually reduces the overall difference with
d rounds of matching, which provides opportunities to
adjust paired candidates across rounds, to cope with the
inaccurate prediction and unblocking migration.

Specifically, before starting the k-th round, we predict
passes PF=Pi! —&—W, assuming no data is migrated in

this 27" time split (N =n,; and PY=p;; for k=1). We sort
the total K super workers in ascendmg order of PF. Our
matching rule is simply selecting the minimum and the
maximum as a pair, and the rest can be deduced in the
same manner. Taking < W;, W; > as an example, to equal-
ize P} and P}, partial data are evenly collected from work-
ers in W, and then evenly assigned to workers in W ;. Note
that W; and W; might have different numbers of workers If
a regular slow worker contributes A* ij data points, then the
corresponding fast worker will receive BA;; where B=t \\

Eq. (9) mathematically shows the calculation of Af ;- The 1dea
behind it is that migration can accelerate the process of
remaining data for every worker in W;, while simultaneously
reducing the speed for W; since more data need to be tra-
versed. In particular, (P}~ ! — P/1) indicates the lost passes of
migrated data. We should exclude the compensation time
from 1 T when estimating the newly added passes in 'V;

. T/d
k—1
P+ (le—l _ Al_f_)Vk—l
_(pk-1 k=1 g AR 17k—1
g S SR R o
(N~ + AV

A full balancing cycle cannot terminate until £>d or
Eq. (8) is met. For k> d, another cycle is launched if ML has
not converged. Another problem is that a time split might
even not be enough for compensation, i.e.,

T/d ( Pk 1)ﬁAkV" 1
Then the two paired super workers should work together
for compensation. Note that now the goal of migration is to
equalize the compensation time respectively for remaining
data and migrated data. The Afj is then computed by the fol-
lowing equation:

( Ak) —ﬂAkvkl

4.3 Asynchronous Data Migration

An idle asynchronous policy can guarantee that, the local
training streaming is not at all aware of data migration, for
every worker including the paired source and target. We
decompose this goal into two parts: completely hiding com-
munication costs and avoiding any possible loss of traversal
passes for data flying on network. The former can be naturally
achieved. This is because FSP does not care about how many
data points are processed by a specific worker, which enables

async. migration

wmdow 1 &

training streaming

A oot .
i selection streaming

°
=,
o
=3
=

<

Q
[
@
f
[}

windowiz{

uondnuayul

Fig. 3. Overlap of local training and migrated data selection. Solid and
dashed blocks respectively indicate native data and selected migrated
data. The black block indicates the current computation focus. W;, € \V;
and W, € W; are respectively regular slow and fast workers.

flexible data exchange. But for the latter, we should very care-
fully manage migrated data at both source and target sides.
Otherwise, they may be skipped by normal traversals.

Our management solution consists of a bi-directional slid-
ing window method at source and an on-demand interrup-
tion policy at target. As shown in Fig. 3, the training
streaming at the source side rotates local data in a top-down
direction. The most recently trained data will not be com-
puted again until a full-batch is done. Owing to the traversal-
safety, we continuously select the total Af] pieces of local data
points for migration, in the reversely bottom-up direction
right before the current computation focus. Note that migra-
tion might continue fitfully over a quite long period, because
of resource contention. We then partition these data into dif-
ferent windows. Only data in the current window, not all,
will be locked for sending and hence prevented from local
training. Once they are successfully sent, we slide to the next
window. On the other hand, data within a window will be
received by the target as a whole and put into a queue. Within
an iteration, the target always trains newly migrated data
with high priority and then continues over locally native data.
Such an interruption makes the former catch up with the latter
as quickly as possible, from the perspective of traversal
passes. Data are removed from the priority queue and
regarded as native when their lost passes have already been
compensated. Till now, we say FSP can smoothly embrace
data migration without large loss penalty of passes.

Recall that the estimated remaining time 7' is typically
smaller than its true, owing to the gradually degraded train-
ing quality. By Eq. (9), more data are migrated to balance
the pass numbers in such a short period. If ML does not con-
verge as estimated, then original stragglers become “fast”
because the fewer remaining data on them will be over-tra-
versed. Now we should perform migration in reverse direc-
tion but clearly waste extra network bandwidth. We solve
this problem by virtual migration. In another word,
migrated data will not be physically removed from source
workers. Instead, they are still preserved but marked as
“inactive” to escape from local training. Once upon
required, we shift the logic computation task by marking
partial of them, like window_2, as “active” again.

5 FLEGEL: A FLEXIBLE ML SYSTEM

Now we present Flegel, an open-source memory-based dis-
tributed system atop our FSP framework®. It particularly

2. https:/ / github.com/FSPML/FSPML

Authorized licensed use limited to: Ocean University of China. Downloaded on January 06,2023 at 06:05:04 UTC from IEEE Xplore. Restrictions apply.


https://github.com/FSPML/FSPML

WANG ETAL.: FSP: TOWARDS FLEXIBLE SYNCHRONOUS PARALLEL FRAMEWORKS FOR DISTRIBUTED MACHINE LEARNING 695

submit

user-1
user-2

slave-1 slave-i
local copy < parameters 1 synchronize local copy
A4 J Vi
A [y read
: Pl
data_table data_table | i |data_table
Worker_1 Worker_2/Coordinator| Worker_j

Fig. 4. Architecture of Flegel.

implements an efficient barrier coordination design, and pro-
vides different convergence termination check mechanisms.

5.1 Parameter Server Framework

Architecture. Fig. 4 gives the overview architecture of Flegel,
which employs a widely used parameter server framework
with the underlying Master-Slave design in cloud comput-
ing. Master is in charge of slaves, including monitoring their
healthy status and being aware of the load variation. It also
responds to concurrent requests of running ML algorithms
submitted by multiple users.

The execution of one job is divided into several workers
which are scheduled across slaves and host different parti-
tions of input data to support data-parallelism. Typically, one
of workers will be selected as the coordinator, so as to
update parameters and then synchronize all copies at the
global barrier.

Uniform APIs. We illustrate the programming APIs used
in Flegel in Fig. 5, where users can override them to meet
their own requirements. The function of initParameter()
describes about how to give an initial guess for parameter
6", as the input of the 1st iteration. updateDataPoint() is
responsible for computing a given data point based on
parameters refined in the previous iteration, and then
returning an aggregator containing the change of local sta-
tistics, which can be immediately accumulated through
invoking aggregate(). aggregate() will be called again at the
flexible barrier to aggregate reports from all workers to
form global statistics. After that, we update parameters by
invoking updateParameter() specified by users. The termina-
tionCheck() function is invoked by the coordinator. It tells
Flegel about whether or not to terminate iterations. Another
voteToHalt() allows Flegel to exclude a data point in the next
iteration. It is invoked in updateDataPoint() when our new
decentralized convergence criterion is used. Here we leave
out details of the last two functions and give them in
Section 5.3.

5.2 Semi-Centralized Coordination

Note that stragglers proceed slowly not only when training
data, but also when responding to barrier signals. However,
in the early version of Flegel, FSP does not touch any details
of the flexible barrier as a whole, and hence the computing
capacity of fast workers is still underutilized. More specifi-
cally, it implements the barrier by a two-phase coordination
protocol [28]. As shown in Fig. 6a, the coordinator first
broadcasts signals to workers to pause local update. The lat-
ter respond by committing training results to the former.

/[ initialize parameters
P initParameter( );

/I compute one data point
A updateDataPoint(D dataPoint, P parameter, int iterationNum);

/I accumulate statistics got from updateDataPoint()
A aggregate(A target, A aggregator);

/| update parameters
P updateParameter(A aggregator, P oldParameter);

/l terminate iterations or not
boolean terminationCheck(A aggregator, int iterationNum);

/I stop training a data point
void voteToHalt( );

Fig. 5. APIs provided by Flegel.
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Fig. 6. Different coordination policies under FSP.

Once all reports are received, the coordinator again broad-
casts signals, together with newly refined parameters and
the interval if necessary, to wake workers from waiting
sleep. Extra waiting costs might be incurred at the first
phase, for fast workers like Worker_1. The reason is the cen-
tralized coordination policy where the coordinator asks all
workers to complete the same workloads from the same
time instance but ignores the different responding speeds,
resembling pre-assigned workloads in BSP.

We improve resource utilization by a semi-centralized
policy where the first phase is issued in a decentralized
manner. Based on the uniformly received interval 7, each
worker launches an independent local thread to tell itself to
pause update. As demonstrated in Fig. 6b, that allows the
i-th worker to personalize its real barrier interval as n=+4;,
by continuously monitoring the elapsed time of respond
and the change of training speed (totally measured as §;). A
straggler can execute a short interval, so as to commit
results in advance and then the coordinator can receive
reports at roughly the same time instance. The second phase
is still issued by the coordinator in a centralized manner, to
ensure workers to see the same parameters and interval if
changed. Such a semi-centralized policy can transfer extra
wait to extra update, which narrows the latency gap of
received reports across workers.

5.3 Convergence Criterion

Flegel provides three default convergence criterions. They
work based on different statistics collected from workers.
The first is to limit the maximum number of iterations,
which is simple but ignores the training quality. By contrast,
a choice is to set an idle objective value. Although pre-set-
ting such a target is difficult, it can guarantee a fair compari-
son among different parallel optimizations, since the
benchmark ML algorithm always converges to the same
point. Another in-practice alternative is to compare a given
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error bound with the value difference between two consecu-
tive iterations. But an important problem here is that the
barrier interval in FSP is unknown and dynamically change-
able. An extremely short interval, of course, leads to a small
variation and hence a false-positive check result. We miti-
gate this problem by decoupling termination check and iter-
ation control. The check interval is set to the runtime of
performing a full pass computation over data on the slowest
worker.

5.4 Boundary of Flegel

We finally discuss the boundary of our FSP design, to
show what ML algorithms can be run on Flegel. FSP espe-
cially works well for the widely employed data-parallelism
training policy where sample data points distributed
across workers are computed to contribute to updating
parameters. In most cases, data points as individual enti-
ties follow the Independently Identical Distribution (IID)
assumption. FSP thereby can flexibly tune how many of
them are consumed within an iteration to remove waiting
costs. Currently, Flegel implements data-parallelism in the
widely-used parameter-server manner. However, it can
also be extended to support another Ring-AllReduce man-
ner [38] to resolve network congestion, especially when
training large pre-trained models with hundreds of bil-
lions parameters.

By contrast, there usually exist strict consistent con-
straints when updating model parameters as a whole in
model-parallelism and scheduling stages in pipeline-parallel-
ism, both of which impair the flexibility of FSP. Another
exception is the scenario where IID does not hold true
because of the application-related semantic-constraint. For
example, action recognition in videos essentially requires
consecutive frames associated with some action to be proc-
essed in the same batch, to preserve the inherent semantic
coherence [39]. FSP might break this principle because a
batch/iteration can be terminated at any time, which gener-
ates negative impacts on the model accuracy.

6 PERFORMANCE STUDIES

We finally conduct extensive experiments to explore perfor-
mance features of our proposals. All tests are implemented
on our Java-based prototype system Flegel, to make an end-
to-end comparison.

6.1 Experimental Setup
The general experimental setting details are given as below:

Frameworks for Comparison. We mainly report the perfor-
mance of our basic binary search based FSP with the empirical
initial interval like Ref. [24] (FSPB), and the smart multi-stage
variant (FSPV) without sensitive initial input. We compare
them against the basic full-batch BSP framework (BSPB) and its
mini-batch variant (BSPV). The latter automatically seeks an
optimal batch size based on cost-benefit analysis [10] at the
very beginning of computations. Asynchronous Parallel frame-
works (ASP) are also tested to investigate the importance of
barriers on convergence.

Experimental Cluster. Our cluster consists of 8 slave
machines with one additional master connected by a Giga-
bit Ethernet switch. Each slave is configured with 4 cores

(Intel Xeon E-2224, 3.5 GHz) and 32 GB of RAM; while the
master has 10 cores (Intel Core 19-10900 K, 3.7 GHz) and
64 GB of RAM. By default, a given ML job is divided into 16
workers evenly scheduled across 4 slaves.

ML Algorithms and Datasets. Six representative algorithms
are tested to explore performance features: K-Means (KMs),
Fuzzy CMeans (FCM), and Gaussian Mixture Model (GMM),
trained by EM; LR, Non-negative Matrix Factorization
(NMF), and Convolution Neural Network (CNN),’trained by
GD. These tests are run over publicly available datasets and
synthetic data generated in a random manner. Table 1 shows
the detailed combination cases. We group these cases into
two categories by the size P x D, each of which is an ordered
6-tuples w.r.t. the algorithm list. The Larger Dataset Tuple
LDT is {PUF, HIGGS, HIGGS, DET, ML25 M, MNIST}; while
the smaller one SDT is {SUSY, MASS, MASS, HIGGS,
ML10M, SYN}. Note that NMF and CNN take as input a large
matrix and a set of images, respectively. Accordingly, P indi-
cates the number of rows/images, while D indicates the num-
ber of columns/ pixels.

Evaluation Metrics. Two metrics are evaluated in experi-
ments, runtime and objectivefunction value. The former is
defined as the elapsed time of iterative training. Loading
data and dumping results are excluded as they are the same
for all frameworks. Given an algorithm, different frame-
works enjoy the same settings, like initial centroid and
learning rate, for a fair comparison. Besides, we employ the
second criterion in Section 5.3, i.e., pre-setting the target of
objective, to ensure that a ML algorithm under different
frameworks can always converge to the same point.

Experiment Design. As stated in Ref. [14], it is hard to
instrument all real distributed infrastructures to accurately
distinguish massive and very different straggling factors,
although they indeed happen in practice. We thereby exper-
iment with Injected and Naturally-occurring straggler pat-
terns (Injected and Natural). From literature researches [13],
[14], [17], [40], Injected is to suspend training threads on
given workers for the r milliseconds every 1,000 data points
processed. Through varying t, we can control the straggling
skewness from general-encountered patterns to extreme-
stress test patterns. Natural is the skewed distribution of
workers among slaves in the multi-tenant scenario [13],
[41]. This happens because a job (and its related workers)
might terminate at any time once it converges, which
dynamically generates the skewness for remaining running
jobs. The specific simulation is the same as described in Sec-
tion 1. Clearly, workers with inserted suspending or on con-
gested slaves, immediately become stragglers.

It is worth noting that Injected and Natural respectively
stand for the periodic transient and the static persistent
stragglers, since the former periodically/dynamically hap-
pens while the latter generates resource contention in the
whole training process. They can validate the generality of
our solutions. Besides, when exploring the reason of run-
time gains, we usually give some representative results and
omit others for brevity and the limited manuscript space,
since they exhibit the similar phenomenons.

3.1t has two convolutional layers with 6 and 12 5x5 kernels
respectively.
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Fig. 7. Runtime evaluation with stragglers (BSP versus FSP).

6.2 Effectiveness of FSP

We first test all of combination cases in two scenarios: one is
the heterogeneous environment (Injected&Natural) where
FSPB generally wins BSPV as demonstrated in Fig. 7, as the
former’s flexible mechanism removes expensive waiting
costs; the other one is the homogeneous cluster status where
BSPV and FSPB have comparable performance as shown in
Fig. 8, because they both can smartly compute a proper
batch size or barrier interval at the very beginning of itera-
tions. Benefitting from flexibility and multi-stage interval
adjustor, FSPV is always the best. The reasons why it beats
FSPB are twofold: (1) the interval that yields the best
speedup during initial iterations might not be the optimal
setting in the whole iterations but multi-stage adjusting can
overcome this shortcoming; (2) its new adjustor is initial-
input-interval-free and can quickly output a setting by
one-pass analysis, which effectively avoids false positive
comparison in FSPB’s recursive binary adjustor. By contrast,
BSPB consistently works the worst, due to the parameter
update delay and the expensive waiting costs.

In particular, the speedup of FSPV compared with BSPB
is up to the factors of 12X (from 1.5X) and 170X (from 3.4X)
in the two distinguished scenarios. Even compared with
BSPV and FSPB, FSPV can still respectively offer 1.3-78X
and 1.0-3.0X speedups when stragglers happen. The homo-
geneous setting w/o stragglers weakens the competitive
advantage of flexible barrier, and hence FSPV only runs
1.3X faster on average than competitors.

We next investigate the scalability when varying the
degree of skewness and the number of stragglers, so that
we can give a preferred setting in Injected. As an indication
of how different frameworks scale with 7, Fig. 9a depicts the
runtime variation. BSPB and BSPV essentially get perfor-
mance degradation because of the increasing waiting
costs—dominated by the slowest workers. While, FSPB and
FSPV scale well, that mainly stems from the flexible barrier
design. Fig. 9b plots runtime against the number of strag-
glers. The performance gap between BSP- and FSP-based
frameworks clearly narrows down. This is because the
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former is insensitive to how many workers are slow, while
for the latter, more data are traversed with fewer passes,
which forces ML algorithms to make a long detour to con-
verge. Finally, our general comparison finds that Injected
with 7=32ms and 4 stragglers can offer a comparable deg-
radation to Natural, for all tested frameworks. We thereby
use this combination as the default setting through the
paper.

We now explore the resource utilization of the CPU
power, to emphasize the advantage of our FSP design. We
analyze utilization of different frameworks by computing
their synchronization costs, since CPUs within workers
pause only at the synchronization barriers. We define the
cost as the elapsed time from the point where a worker
enters a barrier at the end of an iteration, to the point where
it leaves the barrier. Smaller elapsed time clearly indicates
higher utilization. Fig. 10a first demonstrates the time differ-
ence between the fastest worker and the slowest one, for
each test case. The significant difference in values from BSP-
based frameworks indicates that fast workers must wait for
stragglers for a long time, which heavily impairs the utiliza-
tion of CPUs. Fig. 10b further depicts the detailed skewed
elapsed time distribution for every worker. In BSPV, fast
workers (with ids from 5 to 16) arrive at the barrier point in
advance, but are blocked until stragglers (with ids from 1 to
4) have completed pre-assigned workloads. The former
thereby have large synchronization costs, wasting a lot of

.90 [ —5— BSPB . 5 BSPB-¥- FSPB
Q75| 4 BSPV g9 A BSPV-a FSPV
N R 4+ 8y 5 5 o B g o4
= 60 [ —A— ’ g60Ar—rrAa_A,,,,A,,,‘A,,,,Ar—rrél
545 © 45
£ 30 £ 3 e
5 - ¥ S 6,,%—/%”%/%(/'
2 i/ I N 2 158 &a

Qb mmTA A - A S 0

2 4 8 16 32 64 128 2 4 6 8 10 12 14

T (# of stragglers is 4) # of stragglers (1=8ms)

(a) Interval (b) Stragglers

Fig. 9. Impact of configurations in Injected (KMs over HIGGS).
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Fig. 11. Runtime evaluation with stragglers (FSPV as baseline: sync.
coordination).

CPU resources. By contrast, FSPV enables both fast and
slow workers to enter the barrier at nearly the same time, to
reduce the skewness and hence improve CPU utilization.

6.3 Effectiveness of Other Optimizations

We then verify the effectiveness of our lightweight asyn-
chronous workload balance and semi-centralized coordina-
tion techniques, termed as asyn and semi for short. For the
former, we test the synchronous implementation as a coun-
terpart, i.e., sync, to show the impact of data migration costs.
Since FSPV is the best solution as discussed in Section 6.2,
here we use it as baseline.

As presented in Fig. 11, asyn can largely improve the per-
formance of baseline by up to 55.8% (KMs on HIGGS,
Injected). It also consistently outperforms sync, because the
benefit of the latter is usually offset by its expensive block-
ing migration cost, which even generates 35.9% perfor-
mance degradation in the extreme case (KMs on HIGGS,
Injected). The non-deterministic impact prohibitively pre-
vents us from safety using it as a default optimization
choice. semi creates another performance gap between base-
line and asyn. Compared with asyn, the best runtime
improvement is 32.5% at most (LR on HIGGS, Natural).
Overall, together with the two optimizations, the speedup
of FSPV versus the up-to-date FSPB is increased to 4.5X
(from 1.2X).

For better understanding how our techniques work, we
next give detailed behavior analysis.

Asynchronous Data Migration. After a ML algorithm con-
verges, we report two metrics for each of total 16 workers:
the number of completed full traversal passes, indicating
training speed; and the accumulated changing contributions
w.r.t. objective, indicating training quality. We use two sce-
narios w/o and w/ injected stragglers to demonstrate the
metric variation. As shown in Fig. 12, although workers pro-
ceed at very different speeds, the summation of Af just
slightly skews in the favor of fast workers. This is not
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Fig. 12. Effectiveness of asyn. data migration w/ and w/o stragglers
(KMs on HIGGS, Injected with t=32ms and straggler ids from 1 to 4).
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versus asyn. data migration, and centralized versus semi-centralized

surprising because data on stragglers are always updated
based on up-to-date parameters, which generates a large
quality per update and hence the summation, even with the
reduced update number. However, by balancing the speed,
the sufficient power of fast workers can be used to train
high-quality data originally residing on stragglers. These
data make full contributions to convergence, which yields
an overall success of increasing the total summation of Af
from all workers.

Semi-Centralized Coordination. Its performance gain is
actually complex, because the reduced barrier cost can also
enable more frequent parameter update (smaller ») and
then accelerate the whole training. Here we distinguish the
two impacts by recording the synchronization cost per itera-
tion, respectively with traditional centralized and our semi-
variant policies. Reports in Fig. 13 reveal that our proposal
generally beats the counterpart. For example, the total run-
time reduction for KMs on HIGGS is 26.8secs, where the
barrier optimization contributes 56.6%, i.e., 15.2secs, and
the other gain is due to fresh parameters. Fig. 13b depicts
another interesting fact. We find that although the reduced
n increases the number of iterations, our efficient coordina-
tion policy still makes the accumulated synchronization
cost decrease from 48.4secs down to 38.3secs. The remark-
able performance contribution (23.9%) in the total runtime
reduction (42.3secs) again validates that our design is cost-
effective.

6.4 Empirical Validation of Convergence
Besides a formal convergence proof in Section 3.2, now we
give an empirical validation by showing the objective varia-
tion during iterations. All tests are performed without strag-
glers since the convergence guarantee does not care about
such a setting.

Fig. 14 reports objective versus elapsed time plots, which
is achieved by continuously monitoring the computation
progress at sampled time instances. Clearly, the two sub-fig-
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Fig. 13. Effectiveness of semi-centralized coordination (Natural).
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ures reveal that our FSPV monotonously decreases objective,
like the traditional BSPV. Hence, algorithms under Flegel
can converge to the correct solution, but more importantly,
they exhibit a faster convergence speed than existing BSP-
based implementations.

We also implement asynchronous frameworks (ASP) by
completely removing global barriers [42]. In ASP, we manu-
ally set two numbers of parameter update batches (01 and
32) for data on each worker, to explore its performance fea-
tures. There is no doubt that ASP largely mitigates synchro-
nization costs, but this benefit usually cannot translate to
fast convergence. This is because asynchronous updates on
global parameters make some workers use stale local cop-
ies. The incurred errors make it extremely difficult to theo-
retically analyze the convergence, and indeed ASP-based
algorithms can readily diverge (like KMs in Fig. 14a). Thus,
ASP is not a preferred solution even though it works well in
some cases. In contrast, our proposals provide enough flexi-
bility for ML algorithms to be highly efficient.

Another observation we find is that for KMs under ASP,
a small batch number (i.e., a large batch size) works well.
However, this does not hold true for FCM. Selecting a
proper batch size in ASP is also a big challenge for end-
users. We cannot easily design an adjustor as used in
FSPV to uniformly deal with the thoroughly opposite
phenomenons.

6.5 Empirical Validation of Optimal Intervals
Previous experiments have confirmed that FSPV outper-
forms FSPB, because of the multi-stage interval adjustor.
Now we investigate its effectiveness in detail, i.e., how
likely can it seek 7 that is optimal or close to optimal. To
find a real optimal interval, we repeatedly run ML algo-
rithms and manually set a possible barrier interval every
time. Fig. 15 reports the runtime normalized w.r.t. the maxi-
mum in all attempts, against the selected interval normal-
ized w.r.t. the runtime of a full-batch iteration. In particular,
we run tests under Injected with two t values, so as to simu-
late different compute cluster statuses.

BSPB
=3 BSPV

1 FSPV

—A— w/ 25% stragglers = FSPVaopt
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60 25
A -%¥ wlo stragglers

45y
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Fig. 16. Scalability with different compute resources (KMs, Injected).

With n being increased, we can easily observe that the
runtime first quickly decreases and then gradually increases
in all cases. This can be explained by the tradeoff between
high synchronization costs incurred by frequent barriers
(small interval) and low training quality due to infrequent
barriers (large interval). Note that the runtime curve varies
with the specific combination of ML algorithms, datasets
and the computing cluster status. It is impossible to get an
one-fit-all solution to find the “sweet spots,” by offline anal-
ysis, as used in Ref. [10]. This figure also tells us that simply
setting an interval (like 0.5 in Ref. [41]) might generate sig-
nificant performance loss. By contrast, FSPV shows promi-
nent robustness. It can always find a better compromise by
online adjusting intervals and correcting prediction errors.
The average runtime reduction is up to 50% as reported.
When normalized by BSPV w/ the two t values, the run-
time of FSPV varies from 0.633 to 0.250 for KMs, and 0.849
to 0.226 for NMF. That again shows the remarkably out-
standing performance of our proposals, especially when
stragglers happen.

6.6 Scalability Evaluation

Let FSPV+opt stand for FSPV with the asynchronous data
migration and semi-centralized coordination optimizations.
We finally investigate its scalability using different hard-
ware configurations. Fig. 16 explores the impacts of com-
pute resources. In sub-figure(a), another 4 slaves with the
same configuration are added into our cluster. We increase
the number of workers from 4 to 32 and always evenly
schedule them across the total 8 slaves. Take KMs on
HIGGS as an example. FSPV+opt achieves a nearly linear
speedup, regardless of the presence of stragglers. On the
other hand, sub-figure(b) shows the runtime performance
with 5 workers, one of which is run on the NVIDIA Geforce
RTX 3080 GPU (8704 CUDA cores, 1.44 GHz, and 10 GB
GDDR6X memory) and others are run with CPUs. The GPU
device with massive threads has strong computing power,
yielding an inherent heterogeneity gap compared with
CPU. FSPV beats BSPV because GPU can train local data
more frequently, instead of blocking itself to wait for CPUs.
Together with the optimizations of data migration and
semi-synchronization, FSPV+opt finally improves the over-
all performance by 42% at most.

We also test the performance of our proposals under dif-
ferent network bandwidths. By manually limiting the upper
bound of network throughput, we create two test scenarios:
Non-limited and Limited. The bandwidth of the latter
decreases by roughly 50%, as reported by the benchmarking
tool iPerf. For FSPV, we find that the speedup degradation is
less than 2%, which can be ignored. This is because now ML
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TABLE 2
Scalability of the Asynchronous Data Migration With Different
Network Bandwidths (KMs on HIGGS, MB/s)

Settings Non-limited Limited

iPerf Only  Normal  iPerf Only  Normal
Injected  116.75 99.72  98.80  59.38 5757 56.89
Natural 10813 7151  69.22  59.69 5553 54.74

algorithms used in our testbed experiments have the limited
size of model parameters. Collecting statistics and broad-
casting parameters generate tiny runtime delay, which is
not very sensitive to the bandwidth change. However, the
performance penalty for the asynchronous data migration
speed is significant, since many data points are migrated
across workers. Note that CPU is essentially involved in
transferring data. In order to distinguish the impact of CPU
resource contention, we submit an empty job as a baseline,
which does nothing but Only transfers equal-size data as
done in a Normal job. Table 2 summarizes the behaviors by
reporting the peer-to-peer network throughput and data
migration speed. The migration speed clearly linearly
decreases with the bandwidth reduction. However, the
overall performance degradation is still negligible (Iess than
4%), because our bi-directional sliding window and on-
demand interruption techniques in Section 4.3 can avoid the
loss of traversing passes even though data are flying on net-
work for a long while. In particular, Normal always achieves
comparable performance to Only. That explicitly validates
that our asynchronous design can effectively overlap the
communication-intensive data delivery and the compute-
intensive local training.

7 RELATED WORKS

Today’s distributed systems enable scalable ML computa-
tions in the Big Data era. There are a flurry of efforts tar-
geted at solving the straggler problem for further
performance enhancement, especially in heterogeneous
environments. Below, we review these works from three
perspectives to highlight our contributions.

Data Migration and Replication. A straightforward strag-
gler solution is that within each iteration, idle workers that
have already reached the pre-defined barrier location,
dynamically steal workloads from busy workers [12], [13].
In particular, Wang et al. also aim to balance the traversal
number by continuously exchanging data between the fast-
est and the slowest workers [41]. However, all of them
migrate data at runtime in a blocking manner, which is
expensive as reported in our experiments. Harlap et al. [14]
propose to group workers and pre-replicate data on each
other before iterations, so as to quickly migrate logic com-
putation tasks, rather than data. In addition, Hadoop and
Spark [43], [44] support heavyweight speculative execution
by training data on straggling workers redundantly and
using the output from the first successful run. Tandon et al.
collect encoded gradients for accurate parameter update
from partial fast workers with redundant replications and
computations [45]. Clearly, these three policies require addi-
tional memory or compute resources.

Relaxed Synchronous Constraint. Synchronous ML imple-
mentations can provide strict convergence guarantee, but
suffer from stragglers due to the global pre-defined barriers.
Early researchers tackle this problem by relaxing the syn-
chronous constraint. Their works basically fall into three
categories. (1) The first one is confined synchronous parallel
(CSP). It confines the barrier operation to a subset of work-
ers, which naturally reduces the number of workers blocked
by stragglers. Chen et al. [15] directly skip the top-k slowest
workers and drop their training results. Zheng et al. allow
slow workers to continue training with stale parameters
and commit results in future [17]. Miao et al. give a formal
analysis in the All-Reduce parallel setting with point-to-
point communication pattern [46]. Ref. [16] and Ref. [47]
both focus on dynamically tune k, based on runtime statis-
tics. (2) Another extreme is asynchronous parallel (ASP)
without any barrier [21], [22], [23]. Each worker works inde-
pendently and hence usually uses different versions of
parameters. (3) The third branch makes a compromise by
stale synchronous parallel (SSP) [18]. It is similar to ASP but
the iteration number gap between the fastest worker and
the slowest one cannot exceed a given threshold. Further,
Shi et al. propose to replace the worker that is always
detected as a straggler [19]; Zhou et al. design coarse-
grained SSP by grouping similar workers into communi-
ties [20]; Jiang et al. achieve another improvement by tuning
learning rate [48]; and Atallah et al. give a hybrid frame-
work based on coding gradients [45] and SSP [49].

The relaxing idea works well for transient stragglers, but
cannot easily cope with persistent stragglers. CSP and ASP
reduce contributions from data on such workers, and hence,
the model might overfit and/or converge slowly; while, SSP
inevitably degrades to BSP after the threshold is exceeded.
Besides, when training data with inconsistent parameters,
ML requires more iterations to tolerate incurred errors, and
even diverges.

Tunable Workload Assignment. Tuning workloads per itera-
tion can also significantly affect overall training performance.
The most important study is to transform full-batch update
into mini-batch variant [1], [4], to use newly refined parame-
ters in remaining training, as quickly as possible. In particular,
our EM convergence proof is based on the work of Neal et al.
[1], but goes further. We prove that in distributed environ-
ments, the convergence can be guaranteed by sharing consis-
tent parameters across workers. Pre-establishing barrier
locations is thereby unnecessary. Further, many efforts
have been devoted into identifying the mini-batch size [2],
[3], [10], all of which ignore the impact of stragglers.
Recent studies mitigate this problem by customizing batch
size for different workers [25], [26], [27], [50], instead of
using the uniform setting. However, the size is still mea-
sured by the number of data points, and is pre-defined
based on analyzing historical information yet prior to the
upcoming iteration. That is very different from our purely
time-based design, and cannot immediately react to tran-
sient stragglers, especially for those suddenly happening
in the current iteration. They also notice the skewed distri-
bution of traversal numbers, and embrace the impact by
tuning learning rate and/or gradient weight [25], [26], [46]
in GD, which should be empirically and carefully adjusted
by multiple times. And the algorithm-specific setting
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cannot be easily generalized. Resembling our Flegel, some
works also employ a coordinator to synchronize work-
ers [13], [24], [41]. The synchronizing location does not
care about the specific progress of each worker, but,
instead, is dominated by the total number of data already
processed. An accurate barrier control requires frequent
and fine-grained statistic collection from all workers, which
wastes network bandwidth. Worse, their counting-based
interval is either simply set as a half of total data [41] or
recursively adjusted like our binary searching [24], both of
which can not work well as shown in our experiments.
Other Complementary Optimizations. We also investigate
many important but complementary works, like prioritized
training [51], flexible parallelism tuning in task-level [52] and
thread-level within a task [53], and elastic resource schedul-
ing [54], [55]. Besides, Chen et al. attempt to solve the problem
of parameter server stragglers by dynamically scaling in/out
servers and re-balancing the parameter distribution [56],
which is beyond the scope of our focus about worker strag-
glers. Further, Wang et al. conduct local training and parame-
ter propagation in two separate threads for each worker, so as
to overlap computation and communication [57]. Overall, all
of them can be plugged into our Flegel system. Note that
Ref. [53] also proposes asynchronous data migration, but it
targets at balancing the runtime distribution, instead of the
traversing frequency. The latter is a key factor dominating the
performance of FSP, as evidenced by our experiments.

8 CONCLUSION AND FUTURE WORKS

This paper investigates the efficiency of distributed ML
computations. We propose a new flexible synchronous par-
allel (FSP) framework that enables fast workers to perform
more useful works, instead of blocking themselves to wait
for stragglers. The built-in adjustors can automatically seek
a proper synchronous interval to maximize the efficiency
gain. Our lightweight dynamic workload balance technique
further boosts the performance by equalizing the data tra-
versal passes.

For several heterogeneous configurations that we tested,
FSP consistently performs the best. However, the testing
space needs further exploration, like the flexible coordina-
tion across multiple GPUs and even the fine-grained
warps/blocks in a single GPU. On the other hand, although
we implement FSP in our own prototype system Flegel, as
discussed in Section 5.4, any system that supports data-par-
allelism can benefit from our design. Take popular open-
source ML frameworks TensorFlow and PyTorch as exam-
ples. We can embed FSP in them by respectively rewriting
tf.train.SyncReplicasOptimizer and torch.nn.parallel Distribu-
tedDataParallel&torch.distributed, to validate its effectiveness
in open-source communities. Overall, we believe that FSP is
an interesting idea for fast ML computation. We plan to
investigate these open questions as future works.
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