
HGraph: I/O-Efficient Distributed and Iterative
Graph Computing by Hybrid Pushing/Pulling

Zhigang Wang , Yu Gu , Yubin Bao, Ge Yu , Senior Member, IEEE,

Jeffrey Xu Yu , Senior Member, IEEE, and Zhiqiang Wei,Member, IEEE

Abstract—In the big data era, distributed computation is becoming a preferred solution for iterative graph analysis. However, graphs

are rapidly growing in size and more importantly, there exist a lot of messages across iterations. For better scalability, many distributed

systems keep graph data and message data on disk. Now these systems solely employ either pushing or pulling mode to manage data,

but neither can always work well during the entire computation. This is mainly because I/O access patterns are dynamic and complex.

This article proposes a hybrid solution. It achieves the optimal performance in different scenarios by dynamically and adaptively

switching modes between pushing and pulling. Specifically, we first devise a new block-centric pulling technique. It pulls messages

much more I/O-efficiently than the existing vertex-centric pulling mode. We then combine pushing and pulling. For general-purpose, we

categorize graph algorithms and accordingly present two seamless switching frameworks. We also design performance prediction

components specialized to the two frameworks, to decide how and when we can switch modes. Some optimization strategies are also

given to further enhance performance, such as priority scheduling and lightweight fault-tolerance. Extensive experiments against

state-of-the-art solutions confirm the effectiveness of our proposals.

Index Terms—I/O-efficient, distributed iterative graph computing, pushing, pulling

Ç

1 INTRODUCTION

NOWADAYS, most graph analysis jobs are iterative in
nature over very large input data. Many distributed

systems are then developed to cope with the performance
challenge. Pregel [1] by Google as one of the early represen-
tative pioneers employs a Master-Slave framework (Fig. 1),
where Master divides a job into several tasks running on
computational nodes (Slaves) in a cluster. Typically, tasks
first load and partition the graph in parallel. Then computa-
tions proceed through iterations (or “supersteps”) to repeat-
edly update vertices and exchange intermediate results
(messages). Supersteps are separated by global barriers to
coordinate the progress. Besides, a node is referred to as the
sender/receiver side when the task on it is sending/receiv-
ing messages.

Motivation. Pregel has been driving much of the research
on enhancing performance, like partitioning [2], [3], com-
munication [4], [5], and convergence [6]. This paper focuses
on I/O-efficiency, as the memory resource can be easily
exhausted with the drastically growing rate of graph data

and the proportional increase of message data. Adding new
physical nodes of course can alleviate memory pressure,
but is not always economically feasible. By contrast, exter-
nal storage is significantly cheaper than memory storage.
As a result, a lot of efforts have been devoted into disk-
based systems [7], [8], [9], [10], [11], [12], [13], [14].

Problem Analysis. Almost all distributed graph systems
take a pushing mode where messages from one source ver-
tex (svertex) as a whole are generated and then actively
pushed to destination vertices (dvertices). The advantage is
that every svertex is accessed one time at most per super-
step. However, dvertices will not consume messages until
the next superstep so that they can receive required mes-
sages from all in-neighbors. Then messages might end up
being kept on disk due to the large size, which incurs a lot
of random writes. Another preferred mode is to pull mes-
sages from svertices on demand for each scheduled
dvertex. Messages can be consumed immediately without
possible writes. However, one svertex might be read multi-
ple times if it is the common in-neighbor of several
dvertices. That leads to considerably large costs of random
reads since graph data usually reside on disk due to the rap-
idly growing data volume. For example, we run PageRank
over a benchmark graph Orkut (see ork in Table 2). We find
that the runtime per superstep increases from 12 to 116 sec-
onds for pushing when many messages are stored on disk;
and from 5 to 1305 seconds for pulling if most vertices
reside on disk.

Challenges. Pushing and pulling are respectively sensitive

to disk-resident message data and graph data. In the big

data era, both kinds of data are usually on disk. Together

with the fact that the number of messages might change

� Z. Wang and Z. Wei are with the College of Information Science and Engi-
neering, Ocean University of China, Qingdao, Shandong 266100, China.
E-mail: {wangzhigang, weizhiqiang}@ouc.edu.cn.

� Y. Gu, Y. Bao, and G. Yu are with the School of Computer Science and
Engineering, Northeastern University, Shenyang, Liaoning 110819,
China. E-mail: {guyu, baoyubin, yuge}@mail.neu.edu.cn.

� J.X. Yu is with the Department of Systems Engineering and Engineering
Management, The Chinese University of Hong Kong, Hong Kong, China.
E-mail: yu@se.cuhk.edu.hk.

Manuscript received 11 Dec. 2018; revised 4 Sept. 2019; accepted 29 Oct.
2019. Date of publication 4 Nov. 2019; date of current version 1 Apr. 2021.
(Corresponding authors: Yu Gu and Zhiqiang Wei.)
Recommended for acceptance by C. Ordonez.
Digital Object Identifier no. 10.1109/TKDE.2019.2951407

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 5, MAY 2021 1973

1041-4347 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Ocean University of China. Downloaded on May 28,2021 at 08:49:48 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1812-1068
https://orcid.org/0000-0002-1812-1068
https://orcid.org/0000-0002-1812-1068
https://orcid.org/0000-0002-1812-1068
https://orcid.org/0000-0002-1812-1068
https://orcid.org/0000-0001-7422-6254
https://orcid.org/0000-0001-7422-6254
https://orcid.org/0000-0001-7422-6254
https://orcid.org/0000-0001-7422-6254
https://orcid.org/0000-0001-7422-6254
https://orcid.org/0000-0002-3171-8889
https://orcid.org/0000-0002-3171-8889
https://orcid.org/0000-0002-3171-8889
https://orcid.org/0000-0002-3171-8889
https://orcid.org/0000-0002-3171-8889
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-9738-827X
mailto:wangzhigang@ouc.edu.cn
mailto:weizhiqiang@ouc.edu.cn
mailto:guyu@mail.neu.edu.cn
mailto:baoyubin@mail.neu.edu.cn
mailto:yuge@mail.neu.edu.cn
mailto:yu@se.cuhk.edu.hk

with iterations, the performance comparison between push-
ing and pulling is non-deterministic. We then pursue a
hybrid solution where the two modes can be switched adap-
tively if necessary. However, this is a non-trivial task. The
reasons are twofold. First, directly combining pushing and
pulling is not cost effective since the latter suffers from
costly random reads. Second, to gain optimal performance,
some important issues like switching efficiency and switch-
ing time need to be explored, which is especially difficult in
a general system because graph algorithms have very differ-
ent behaviors.

Our Contributions. This paper explores a path to such a
target hybrid solution. We first challenge the conventional
wisdom that messages are pulled in a vertex-centric man-
ner. Instead, we design a new Block-centric Pulling mode
called BPull to reduce the number of random reads. It parti-
tions vertices into several blocks so that vertices as dvertices
in the same block can share a single request to pull mes-
sages from svertices. More importantly, the outgoing edges
of a svertex are further divided into fine-grained subsets
based on the distribution of dvertices among blocks. By this
design, edges in a subset will be read as a whole to generate
messages, and hence, the corresponding svertex is read
only once.

Second, the existing pushing mode and our BPull are
decoupled into a series of functions. By sharing the common
vertex update operation, we can re-organize the execution
order of such functions to smoothly switch modes. Further,
to seek a proper switching point, a naturally desirable solu-
tion is to predict runtimes of the two modes, and then select
an optimal one. More specifically, we dynamically compute
the performance difference from network communication
and disk I/O perspectives, in order to infer the runtime
comparison result. For better accuracy, we basically divide
graph algorithms into two categories based on the variation
degree of runtimes among iterations. Accordingly, two pre-
diction components are designed and respectively used in a
Basic Hybrid-Switching framework BHS and a Generalized
variant GHS. GHS is more general than BHS at the expense
of requiring additional offline knowledge and modifications
on the pushing mode.

We finally give two optimization strategies to further
boost the overall performance. (1) Priority scheduling. Dif-
ferent nodes in BPull can freely send requests and the com-
putation of a node cannot proceed until all required
requests have been responded to. However, the default
responding order is FIFO (first-in, first-out), which usually
generates considerable waiting costs for nodes. Different
from FIFO, now we continuously monitor the responding

status of each node. Whenever necessary, we will dynami-
cally prioritize requests so that requests urgently required
by a node can immediately preempt the responding
threads. This design thereby maximally unleashes the
computational power. (2) Lightweight fault-tolerance. It is
most likely that some nodes fail in a cluster. Existing fault-
tolerance techniques [1], [15] can accelerate failure recovery
but at the expense of archiving a lot of messages in the fail-
ure-free (no failure) execution. Instead, we propose to log
some lightweight yet important metadata. Upon failures,
such data can be used by our BPull to quickly re-generate
messages required in recovery. As a result, our solution can
provide competitive recovery efficiency with nearly-zero
failure-free performance penalty.

Overall, benefitting from all techniques mentioned
above, the resulting prototype system HGraph achieves up
to 19x speedup, in comparison with up-to-date push- and
pull-based systems.

We state that this paper extends a preliminary work [16]
in the following aspects. (1) We design a priority scheduling
policy to further enhance the performance of BPull. (2) We
investigate the data access patterns of different graph
algorithms and then propose a generalized variant GHS of
BHS. (3) We present an efficient lightweight fault-tolerant
method by fully utilizing BPull. (4) To show the generality
and advantage, more graph algorithms and the most
recently published system [13] are tested.

The remainder of this paper is organized as follows.
Section 2 provides necessary background on pushing and
pulling modes. Section 3 presents our novel BPull and
Section 4 further introduces the basic and generalized
hybrid solutions. Section 5 elaborates the priority schedul-
ing and fault-tolerant optimizations. Section 6 contains a
thorough experimental study. Section 7 overviews related
works and Section 8 concludes this paper.

2 OVERVIEW OF PUSH AND PULL

We model a graph as a directed graph G ¼ ðV;EÞ, where V
is a set of vertices and E is a set of edges. For an edge ðu; vÞ,
u is the source vertex denoted as svertex, and v is the desti-
nation vertex denoted as dvertex. We state that the memory
resource is limited if it cannot store messages entirely. In
this case, the limited memory resource is supposed to be
allocated for more I/O-inefficient messages in a high prior-
ity instead of graph data [12]. This paper thereby assumes
graph data reside on disk. Without loss of generality, we
assume each node runs only one task and then discuss com-
munication among nodes. Now we introduce existing push-
ing (Push) and pulling (Pull) modes.

Push. We use Giraph [8] as an example Pregel-like system.
In one superstep, every vertex u in V is selectively sched-
uled to compute a user-defined function compute() (see
Eq. (1)) in parallel, if u receives messages. For simplicity, let
MIðuÞ and MOðuÞ denote the messages received and sent
to/from u.

computeðut;Mt
IðuÞÞ ! ðutþ1;Mtþ1

O ðuÞÞ: (1)

An implementation of a graph algorithm, PageRank, is
given in Fig. 2a. In the tth superstep, u first gets an iterator
msgs of Mt

IðuÞ that keeps messages from in-neighbors in

Fig. 1. Illustration of distributed and iterative graph processing.

1974 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 5, MAY 2021

Authorized licensed use limited to: Ocean University of China. Downloaded on May 28,2021 at 08:49:48 UTC from IEEE Xplore. Restrictions apply.

the (t-1)-th superstep (Line 2). After summing all messages,
the vertex value is updated from ut to utþ1 (Line 3). Then u
sends utþ1 divided by its out-degree as messages Mtþ1

O ðuÞ to
all out-neighbors (Lines 5-6). Mtþ1

O ðuÞ for every u forms
Mtþ1

I in superstep-(t+1). u votes to halt to terminate computa-
tions if the maximum number of supersteps, maxNum, has
been reached. Fig. 3a gives an introduction to the data flow
within a typical superstep t on one computational node. In
Giraph, Mt

I and Mtþ1
I are possibly spilled onto disk if a

buffer overflow is detected.
Pull. Unlike Push, Pull shifts the generation of messages

inMt
O orMt

I from superstep (t-1) to t. That is, at superstep-t,
the required messages are not available at the receiver side.
Instead, they are pulled from svertices. Thus, Pull decouples
compute() into two functions pullRes() and update(), as
shown in Eq. (2) and Eq. (3). Fig. 2b shows the implementa-
tion of PageRank using Pull. Specifically, pullRes is run at
the sender side to reactively respond to the pull request
from v as dvertex, i.e., reading vertex ut as svertex to gener-
ate required messages in Mt

OðuÞ or Mt
IðvÞ (Lines 1-4). While,

update takes pulled messages from u’s in-neighbors to
update ut (now as dvertex) at the receiver side. In particular,
at superstep-(t-1), u indicates that it will respond to requests
by invoking voteToRespond (Line 12). We outline the data
flow of Pull in Fig. 3b. Because messages in Mt

O or Mt
I are

consumed immediately, there is no disk I/O for messages.

pullResðutÞ ! Mt
OðuÞ (2)

updateðut;Mt
IðuÞÞ ! utþ1: (3)

In particular, u is called as an active vertex if it is processed by
compute() orupdate(). Similarly, it is a responding vertex if it gen-
erates messages in compute() or pullRes(). Let Vact and Vres be,
respectively, the sets of active and responding vertices. Then
before invoking compute(), Push loads outgoing edges in
advance based on Vact.While this is done based on Vres forPull.

Performance Study. We then analyze the total runtime cost
C for Push and Pull. Shown in Eq. (4), N is the number of
supersteps. In one superstep, we use Ccpu, Cnet, and Cio, to
represent the CPU cost, communication cost, and disk I/O
cost, respectively. Because both modes have the same com-
pute workload and N , the performance difference is domi-
nated by Cnet and Cio. For simplicity, we directly study
network bytes and disk I/O bytes.

C ¼ ðCcpu þ Cnet þ CioÞ � N : (4)

We first discuss Cnet. Pull takes additional time to send
pull requests. However, all messages regarding on a request

are for the same dvertex. The good locality enables effective
and efficient message combination/concatenation (see
Section 3.2). In contrast, most push-based systems disable
this optimization because of poor locality [4], [8]. Thus, the
great communication gain can easily offset costs caused by
sending pull requests. We then consider Cio. In Push, mes-
sages are carried across two consecutive supersteps and
may end up being kept on disk, introducing excessive I/O
costs. Pull naturally solves this problem but generates many
random accesses to sverticeswhen responding requests.

In conclusion, Push and Pull have different strengths.
Our goal is to design hybrid solutions (Section 4) to adap-
tively choose a profitable mode. But before that, we intro-
duce a block-centric technique in Section 3 to improve the
I/O-efficiency of Pull.

3 BPULL: BLOCK-CENTRIC PULLING

This section describes BPull. We first present a data structure
called VE-BLOCK, and then give the details on how to pull
messages using VE-BLOCK. Finally, we discuss some key
parameters inVE-BLOCK to enhance the efficiency ofBPull.

3.1 Efficient Graph Storage VE-BLOCK

VE-BLOCK Consists of Two Components: Vblocks for verti-
ces and Eblocks for edges. Consider adjacency lists for rep-
resenting a graph where every vertex keeps a quadruple
ðid; val; jVoj; VoÞ. Here we denote by id and val the id and
value of one vertex, respectively. Vo is a list of out-neigh-
bors, and jVoj is the out-degree. In VE-BLOCK, we simply
range-partition [8] all vertices into V Vblocks, b1-bV , in total.1

A Vblock keeps a list of triples ðid; val; jVojÞ. Given bi, we
have V Eblocks, gi1-giV , to maintain outgoing edges. In par-
ticular an edge ðu; vÞwith u in bi and v in bj falls into gij. Fur-
ther, in gij, edges from the same svertex u are clustered in a
fragment. The svertex id id and an integer indicating the
number of clustered edges, are the auxiliary data.

For better performance, VE-BLOCK has built-in Meta-
data—Xj for bj and Yji for gji.Xj keeps six items: the number
of svertices in bj (#), the total in/out-degree (ind/outd) of
svertices, a bitmap xj, a responding indicator (res), and the
size of this block. In particular, the ith bit in xj is set if there
exist edges directed from bj to bi. res is “true” if at least
one svertex needs to respond to pull requests. Yji records
the disk file size of gji and the numbers of edges, fragments,
svertices, and dvertices.

Fig. 4 shows VE-BLOCK for an example graph. Vertices
are partitioned into three Vblocks kept by two nodes T1 and
T2. Edges are distributed into Eblocks accordingly. For

Fig. 2. Algorithm implementation in Push and Pull.

Fig. 3. Data flow in Push and Pull at superstep-t.

1. Any other partitioning method can also be used.

WANG ET AL.: HGRAPH: I/O-EFFICIENT DISTRIBUTED AND ITERATIVE GRAPH COMPUTING BY HYBRID PUSHING/PULLING 1975

Authorized licensed use limited to: Ocean University of China. Downloaded on May 28,2021 at 08:49:48 UTC from IEEE Xplore. Restrictions apply.

example, (v3, v2) is assigned into g21 because v3 belongs to b2
and v2 belongs to b1. The bitmap in X2 (111) indicates that
vertices in b2 have out-neighbors in the total three Eblocks
g21-g23. Further, take g21 as an example. There exist two
edges with two svertices fv3; v4g and one dvertex fv2g, as
shown in Y21.

3.2 Pull Requesting and Pull Responding

In order to pull messages, the requesting operation
(Pull-Request) is performed at the receiver side that
requests messages to be consumed; while, the responding
operation (Pull-Respond) is performed at the sender side
that generates messages on demand.

We discuss Pull-Request in Algorithm 1. In a superstep,
Tx will invoke Pull-Request to request messages from any
node Ty for every Vblock bi held by Tx. All messages for ver-
tices in bi are kept in a message receiving buffer BRx. Also,
an Active Bitmap is associated with such vertices to indicate
whether or not a specific one is active. A bit in Active Bitmap
is set if the corresponding vertex is originally active or
receives new messages. Like the Active Bitmap, a Responding
Bitmap is used and the bit is set if the associated svertex is a
responding vertex. Active Bitmap is also updated after
update(), if some vertex becomes inactive by voting to halt.
Obviously, pulling messages is done in Vblocks.

Algorithm 1. Pull-Request

1 foreach Vblock bi 2 VE-BLOCK on Tx do
2 foreach each computational node Ty do
3 send a pull request for Vblock bi to Ty;
4 insert messages received from Ty into a buffer BRx;
5 concatenate or combine messages in BRx;
6 update Active Bitmap;
7 foreach vertex u in Vblock bi do
8 u.update() if u is active;
9 update Responding Bitmap by voteToRespondðÞ;
10 update Active Bitmap by voteToHaltðÞ;

In the same superstep, Ty needs to react to pull requests
by Pull-Respond (Algorithm 2). Assume Ty receives a pull
request for bi from Tx. It will check for every Vblock bj that

Ty holds, to see if there are any messages that need to be
sent to bi. Towards this end, the meta-information Xj is
used. Ty first checks the Vblock responding indicator res in
Xj. The result, if true, will make Ty further check the ith bit
in the bitmap xj. If the ith bit is on, Eblock gji is read. Then
pullRes() is called for every responding vertex u as svertex in
bj, to generate messages required by bi. This is very different
from the traditional vertex-centric Pull where one request
returns messages for a single dvertex.

Algorithm 2. Pull-Respond

Input: Block id i of the requested Vblock bi
1 foreach each Vblock’s metadataXj on Ty do
2 ifXj:res is 1 and the ith bit inXj’s bitmap is 1 then
3 foreach each fragment in Eblock gji do
4 if u.isRespondðÞ is true then
5 insert u.pullRes() into a sending buffer BSy;
6 concatenate or combine messages in BSy;
7 package and send messages for bi;

Note that several svertices can generate messages to the
same dvertex v. In Algorithm 2, these message values can be
concatenated to share the same id of v, to reduce communica-
tion costs. Further, if they are commutative and associative [1],
they can be combined into a single one (Combiner). Similarly,
in Algorithm 1, messages can also be concatenated or com-
bined to savememory space.

3.3 Determining the Number of Vblocks

Clearly, the number of Vblocks, V, determines the granular-
ity of sending pull requests, and hence becomes critical for
performance. We then discuss V in terms of memory usage
and I/O cost.

Memory Usage. The memory of a node Ti is mainly used
by two buffers: BRi for receiving messages in Pull-Request
and BSi for sending messages in Pull-Respond. Suppose Ti

keeps a set Vi of vertices. Giraph (Push) uses Bi as the maxi-
mum number of messages in memory on Ti,

2 i.e., available
memory. Given Bi, we then analyze how to compute a
proper Vblock granularity Vi.

Suppose there exist T nodes. BSi is divided into T sub-
buffers, as these nodes may send pull requests to Ti at the
same time. In fact, we can easily infer that both BSi and BRi

are inversely proportional to the total number of Vblocks
V ¼

P
Vi. This is because a large V can decrease the number

of vertices in a Vblock. Then the number of messages tempo-
rarily kept in the sub-buffer on Ti and further received at the
receiver side decreases.

For algorithms supporting Combiner, when dealing with
a pull request initiated by bx from Tj, Ti will not flush out
messages until all of them have been produced. The goal is
to thoroughly combine messages before sending to achieve
high communication gains. Clearly, combination bounds
the number of messages to

jVjj
Vj
. Thus, BSi ¼

PT
j¼1

jVjj
Vj . On the

other hand, messages for bxþ1 are pre-pulled in an asynchro-
nous fashion when vertices in bx are being updated. We
employ this design to reduce the waiting time. Then

Fig. 4. The VE-BLOCK structure.

2. In fact, Bi in Giraph only indicates the receiving buffer size. We
ignore the sending buffer size because Giraph immediately flushes out
messages once the buffer overflows.

1976 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 5, MAY 2021

Authorized licensed use limited to: Ocean University of China. Downloaded on May 28,2021 at 08:49:48 UTC from IEEE Xplore. Restrictions apply.

BRi ¼ 2 jVij
Vi
. Together, we compute every Vi by solving equa-

tions shown in Eq. (5) for 1 � i�T .

Bi ¼
XT
j¼1

jVjj
Vj

þ 2jVij
Vi

(5)

Bi ¼
P

u2Vi in� degðuÞ
Vi

: (6)

For concatenating algorithms, buffering all messages
largely increases the memory usage. Hence, we immedi-
ately flush out messages whenever necessary, resembling
Giraph. Then the size of BSi can be ignored. Now Bi equals
BRi whose size is affected by the total in-degree of one
Vblock. Pre-pulling is also disabled due to the memory
usage bottleneck. We then set Vi using Eq. (6).

I/O Costs. In BPull, Pull-Respond needs I/O costs to read
the svertex value and auxiliary data for each possible
fragment. Theorem 1 reveals that the expected number of all
fragments is proportional to V. Further, because disk I/Os
in Pull-Request are independent of V, the total I/O cost is
proportional to V.

Theorem 1. Let F ½V� denote the number of fragments related to
u as svertex. EðF ½V�Þ is the expected F ½V�. Then EðF ½V�Þ/V.

Proof. Please see Section 1 in the supplementary file,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TKDE.2019.2951407. tu

In conclusion, we compute Vi using Eq. (5) or (6), which can
satisfy thememory usage constraint andminimize I/O costs.

4 ADAPTIVE HYBRID SOLUTION

This section first gives the performance analysis of Push
and BPull, and then describes two hybrid solutions to com-
bine them for graph algorithms with different I/O patterns.

4.1 Performance Analysis

We analyze Cnet and Cio, the main factors affecting the per-
formance (see Section 2). Note that dvertices in a Vblock
share the same pull request, which reduces the cost of send-
ing requests. Together with the optimization of concatena-
tion/combination, BPull outperforms Push in term of Cnet.
We then focus on Cio.

Cio of a complete superstep is the I/O cost caused by pro-
ducing messages and updating vertices. LetMt be the num-
ber of messages produced at the (t-1)th superstep in Push or
at the tth superstep in BPull. Then Et�1 and Et respectively
stand for the set of edges read in Push and BPull for mes-
sage generation. After completing the tth superstep, we
show the I/O costs of Push in Eq. (7) and BPull in Eq. (8).
Here, Mt

disk is the set of messages resident on disk, and Ft is
the set of fragments covering all edges in Et. We denote by
IOð:Þ the number of bytes of the given data. Specifically,
2IOðMt

diskÞ is the total number of write and read bytes
regarding messages. IOðFt)/IOðV t

rr) denotes the I/O cost of
fragments’ auxiliary data (Ft)/svertices values in Vblocks
(i.e., V t

rr) read by Pull-Respond. IOðV t) and IOðV t�1) respec-
tively indicate the costs of updating vertices under BPull

and Push, which are equal to each other.

Ct
ioðPushÞ ¼ IOðV t�1Þ þ IOðEt�1Þ þ 2IOðMt

diskÞ (7)

Ct
ioðBPullÞ ¼ IOðV tÞ þ IOðEtÞ þ IOðFtÞ þ IOðV t

rrÞ: (8)

We can compute the number of disk-resident messages by
jMt

diskj ¼ Mt �
PT

i¼1 Bi if Mt >
PT

i¼1 Bi; and zero, other-
wise. However, the value of Mt (and hence jMt

diskj) might
dynamically change with t, leading to different I/O-efficiency
comparison results. On the other hand, before exchanging
messages, we cannot estimate the communication gain of
BPull. The two factors render the overall performance com-
parison result of Push and BPull to be particularly non-
deterministic, which motivates us to design a hybrid solution
to smartly switchPush andBPull if necessary.

4.2 BHS: A Basic Hybrid-Switching Framework

A basic hybrid-switching framework (called BHS here) must
accommodate Push and BPull from two perspectives: com-
puting functions for algorithm implementation and data stor-
age for consistent and efficient data accesses. The issue of
switching time is also discussed for better performance.

Computing Functions. Like existing Pull, BPull also decou-
ples compute() in Push into pullRes() and update(). For
Push, compute() is divided into three functions: loadM(),
update(), and pushRes(). Here, loadM() loads messages
received at the previous superstep into a local buffer
(Eq. (9)), to prepare to be consumed in update(). Ginðu) is the
set of u’s in-neighbors. Following update(), pushRes() is
immediately invoked to broadcast new messages Miþ1

O ðuÞ
to u’s out-neighbors (Eq. (10)).

The decoupling of compute() supports a seamless switch-
ing by sharing update(). When switching from BPull to
Push, we first invoke pullRes() and update() to update ver-
tex values, and then immediately call pushRes() based on
new values. Conversely, when switching from Push to
BPull, loadM() and update() are invoked to update vertex
values which will be used by pullRes() at the next superstep.

loadMðÞ
X

x2GinðuÞ

Mt�1
O ðxÞ

0
@

1
A ! Mt

IðuÞ (9)

pushResðutþ1Þ ! Mtþ1
O ðuÞ: (10)

Data Storage. The shared update() makes Push and BPull
share common vertex values, i.e., Vblocks in VE-BLOCK.
Particularly, although pulling and pushing messages are
done in a single superstep when switching from BPull to
Push, update() is invoked only once for each vertex, which
avoids reading/writing conflicts. On the other hand,
Eblocks cannot support efficient edge accesses for Push,
because all edges of u are required in pushRes(), but they
are maintained in different Eblock files. We thereby repli-
cate edges in adjacency lists for Push.

Switching Time. The key to gain optimal performance in
BHS is deciding the right switching time. Recently Shang
and Yu [17] report that for many graph algorithms, metrics
collected by the current superstep can be used to predict

WANG ET AL.: HGRAPH: I/O-EFFICIENT DISTRIBUTED AND ITERATIVE GRAPH COMPUTING BY HYBRID PUSHING/PULLING 1977

Authorized licensed use limited to: Ocean University of China. Downloaded on May 28,2021 at 08:49:48 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TKDE.2019.2951407
http://doi.ieeecomputersociety.org/10.1109/TKDE.2019.2951407

those of the remaining supersteps. This paper follows the
same principle but the difference is that we design a metric
Q which can effectively characterize the performance of
Push and our BPull.

Specifically, after superstep-t, we can compute Qt based
on Cnet and Cio. For Cnet, Bytem stands for the size of a desti-
nation vertex id if messages are concatenated, or the size of
a whole message if combination is enable. Mt

co is the num-
ber of concatenated or combined messages across network
in BPull. Mt

coBytem thereby denotes the extra communica-
tion cost of Push, compared with BPull. On the other hand,
based on Eqs. (7) and (8), we can compute the difference in
Cio by distinguishing random-read/write and sequential-
read/write. Eq. (11) finally shows how to evaluate the
performance difference between Push and BPull. Here,
srr/srw/ssr and snet stand for the random-read/random-
write/sequential-read throughput, and the network
throughput, respectively. Apparently, BPull has superior
performance if Qt � 0.

Qt ¼Mt
coBytem
snet

þ IOðMt
diskÞ

srw
� IOðV t

rrÞ
srr

þ IOðEt�1Þ þ IOðMt
diskÞ � IOðEtÞ � IOðFtÞ
ssr

:

(11)

Qt is available only after the tth superstep. Hence, it can-
not affect the execution of the current superstep. However,
we can use it as the comparison result at superstep-(t+Dt) in
the near future, to select an efficient mode from Push and
BPull. Dt is the switching interval and Dt�1. Now we can
compute Qt by Ct

ioðPushÞ, Ct
ioðBPullÞ, and Mt

co. Because
either Push or BPull is run at a single superstep, some of
such statistics can be directly collected, while others must
be estimated.

Particularly, when actually running Push, we will know
the set of responding vertices and its distribution among
Vblocks. We then figure out the set of required Eblocks if
BPull is run. Now CioðBPullÞ can be estimated. In addition,
Mt

co is estimated by the concatenating/combining ratio in
the most recent BPull execution. Note, that if BPull has not
yet been run, it is zero. In contrast, for estimation of Push,
Mt

disk is inferred by comparing Mt against memory capac-
ity. Further, after estimating how many edges will be read
from disk based on the set of active vertices, we can compute
Ct

ioðPushÞ. For both modes, collecting statistics and comput-
ing Q can be performed at the global barrier.

As reported by Shang et al. [17], the prediction accuracy
is proportional to 1

Dt, Dt�1. However, Dt ¼ 1 might cause
frequent switching operations. In particular, when switch-
ing from BPull to Push, pullRes() and pushRes() are run in a
single superstep. The potential resource contention results
in a slight performance loss. Hence, our compromised solu-
tion is to set Dt as 2.

PUSH versus BPull in BHS. We do this analysis for better
understanding the switching behaviors. By Eq. (11), the key
point is Q. Its sign decides that a specific superstep will run
Push or BPull, i.e., which of the two modes has superior per-
formance. Before analysis, we make an assumption that
Vres�V among iterations. That means each vertex always
broadcasts messages to all of its neighbors at each super-
step. With this assumption, all edges will be read to

generate messages, and then the numbers of messages and
edges are equal to each other (Mt�jEj), which facilitates
the I/O-cost estimation. Let f be the number of fragments
in Eblocks. B¼

PT
i¼1 Bi is the total memory capacity. Theo-

rem 2 shows how to compare the I/O-efficiency based on
easily collected factors B, f , and jEj. Then we can draw the
following conclusions.

1) If B � ðjEj � fÞ, BPull is more I/O-efficient than
Push, because the latter needs to process a large
amount of disk-resident messages. Together with the
fact that BPull has consistent superior communica-
tion performance, we know Q is positive and hence
BHS always runs BPull.

2) If B is so large that all data are kept in memory, I/O
costs are zero. Q solely depends on the communica-
tion efficiency. BHS thereby consistently runs BPull.

3) If both conditions are not satisfied, with increase of
B, many messages can be computed in memory,
which decreases the message I/O cost of Push and
even gradually offsets the communication gain of
BPull. BHS might run Push or BPull, based on the
online estimation of Q.

Theorem 2. CioðPushÞ � CioðBPullÞ if B � ðjEj � fÞ.

Proof. Please see Section 2 in the supplementary file, avail-
able online. tu

The assumption of Vres�V holds true for some algo-
rithms like PageRank, but does not for others like Single-
Source Shortest Path (SSSP). For the latter, Mt changes
with iterations. It is difficult to make the theoretical analysis.
However, BHS can collect enough information to compute
Q and then smartly make the right choice. Besides, jEj, f
and B are all available once VE-BLOCK is built. Thus, before
iterations, BHS can select the initial mode for the first super-
step by the discussion above and then dynamically switch
modes if necessary.

4.3 GHS: A Generalized Hybrid-Switching
Framework

Our further investigation reveals that BHS may not be a
good choice for some other important algorithms. The main
problem is the low prediction accuracy. We now provide a
generalized variant.

Boundary of BHS. BHS works well for the category of
algorithms where the runtime gradually changes in neigh-
boring supersteps. The Gradual-Change property implies the
mode that currently yields the best speedup is usually the
optimal choice in the near future. Hence, it is reasonable to
approximate QtþDt using Qt. Many algorithms fall into this
category, like SSSP, Random Walk, Connected Compo-
nents, and PageRank. In contrast, for Sudden-Change algo-
rithms, the runtime suddenly and frequently changes with
iterations, leading to a large difference between Qt and
QtþDt even if Dt ¼ 1. The prohibitively low prediction accu-
racy will guide BHS to select a suboptimal mode. Such algo-
rithms include Maximal Independent Sets (MIS), Maximal
Cliques, Vertex Coloring, Bipartite Matching, and so on.

For better understanding the weakness of BHS, we run
two representative algorithms SSSP and MIS over a fri

1978 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 5, MAY 2021

Authorized licensed use limited to: Ocean University of China. Downloaded on May 28,2021 at 08:49:48 UTC from IEEE Xplore. Restrictions apply.

graph on Amazon EC2. Fig. 5 shows results of a push-based
method (PushM3 [12]) and our BPull. For more details about
the experiment settings, please refer to Section 6.1.

Clearly, SSSP has a gradual runtime change after reach-
ing the peak at superstep-6. When detecting Q < 0 at super-
step-14, we can assume that the comparison result holds
true in the near future, and so it does. Differently, MIS
shows the sudden and frequent runtime change. BPull out-
performs Push (Q > 0) at supersteps 1, 3, 5, ...; but under-
performs (Q < 0) at 2, 4, 6, Switching modes at the right
time can significantly drop the overall runtime, but it is
very difficult. For example, following BHS, the predicted Q2

is positive because Q1 > 0, but actually it is not. Thus, we
need a more generalized switching framework to accurately
predict the I/O variation of sudden-change algorithms.

GHS for Sudden-Change Algorithms. At superstep-t, since
the accuracy of approximating Qtþ1 with Qt is low, a
straightforward alternative is to directly compute Qtþ1.
However, the computation must be accomplished before
messages are pushed/pulled—the majority of workloads in
superstep-(t+1). Then we can duly switch to the optimal
mode. Below, we first analyze what statistics are required
by computing Qtþ1, and then show how to modify the itera-
tive framework for collecting statistics.

By Eq. (11), we know Qtþ1 is dominated by the communi-
cation gain of BPull, the message I/O cost of Push, and the
I/O difference of reading graph data under BPull and Push.
The former two depend on how many messages are pro-
duced for superstep-(t+1), i.e., Mtþ1; while, the latter can be
inferred by the sets of active vertices and responding vertices
respectively at supersteps t and (t+1), i.e., V t

act and V tþ1
res .

More specifically, V t
act and V tþ1

res are respectively formed by
Active Bitmap and Responding Bitmap which are updated
online (see Section 3.2). For Mtþ1, we can compute it by
summing the number of messages htþ1ðuÞ produced by
each vertex u in V tþ1

res . Here, htþ1ðuÞ is specific to applications
and can be given as offline knowledge.

In BPull, the two required bitmaps are naturally pro-
vided at the end of superstep-t. We can duly compute Qtþ1

before superstep-(t+1). In contrast, Push invokes compute()
for each active vertex to update state and push messages.
Clearly, the Responding Bitmap is not available until all active
vertices have been updated. However, at that moment, all
messages have been pushed, i.e., the majority of workloads
have been done. We solve this problem by separating state
update and message pushing, which are respectively per-
formed by the decoupled functions update() and pushRes()

in BHS. The two functions are run only when switching
modes in BHS, but now, they are used in a regular push-
based superstep. We first run update() and then insert a
mini-barrier to save updated vertices onto disk. Following
that, pushRes() is invoked to re-load vertices to generate
messages. At the mini-barrier, the Responding Bitmap can be
correctly collected.

ComparedwithPush using compute(), the two-phase vari-
ant takes additional costs IOðV tþ1

res Þ=ssr to re-load responding
vertices. Further, the number of edges read fromdisk depends
on V tþ1

res instead of V t
act. Then the I/O cost of reading edges

changes from IOðEtÞ to IOðEtþ1Þ. Together, we give the new
performancemetricQtþ1 in Eq. (12).

Qtþ1 ¼Mtþ1
co Bytem
snet

þ IOðMtþ1
diskÞ

srw
� IOðV tþ1

rr Þ
srr

þ IOðV tþ1
res Þ þ IOðMtþ1

diskÞ � IOðFtþ1Þ
ssr

:

(12)

The generalized hybrid-switching (GHS) framework com-
bines BPull and the two-phase Push. At superstep-t, it first
invokes pullRes() for BPull or loadM() for Push. Then update()
is run to update vertices and collect required online statistics.
Accordingly, we compute Qtþ1 to guide how to produce mes-
sages. That is, vertex values are reloaded and then pushRes()
outputs messages, if Push is a preferred mode at superstep-
(t+1). Otherwise, nothing is done. The requiredmessages will
be pulled at superstep-(t+1).

BHS versus GHS. The switching decision in GHS is given
before the most workloads of superstep-(t+1) are processed.
Instead, for BHS, the decision is available at the end of
superstep-(t+1). In this case, messages used in superstep-
(t+1) are still pulled/pushed in the old mode. The delayed-
response is acceptable for gradual-change algorithm, but can-
not be tolerated for sudden-change algorithms because of
fleeting optimization opportunities. Overall, as a general
framework, GHS removes the gradual-runtime-changing
assumption, but requires additionally mini-barriers and off-
line knowledge for performance predication. That means if
we cannot specify the runtime changing pattern of an algo-
rithm, we can conservatively run it under GHS.

Currently, we characterize the runtime pattern by the
ways of compute() or update() &pullRes() being designed.
In general, if the behaviors of vertex update and message
generation is independent of the specific superstep counter,
the workload will not change or just gradually change with
iterations. The algorithm then belongs to the gradual_change
category. Otherwise, it falls into the sudden_change category.

5 OPTIMIZATIONS

We finally introduce two optimizations for hybrid frame-
works to further enhance the performance. They are priority
scheduling in Section 5.1 and lightweight fault-tolerance in
Section 5.2.

5.1 Priority Scheduling in BPULL

In BPull, a computing node as a message receiver will
broadcast pull requests among nodes for every local Vblock.
Since all receivers work individually, a node as a message
sender can receive more than one request at the same time.

Fig. 5. Illustration of runtime change (fri). (a) y-axis indicates runtime per
superstep. (b) Right y-axis indicates the value of Q.

3. PushM is an advanced pushing method tested in our experiments.

WANG ET AL.: HGRAPH: I/O-EFFICIENT DISTRIBUTED AND ITERATIVE GRAPH COMPUTING BY HYBRID PUSHING/PULLING 1979

Authorized licensed use limited to: Ocean University of China. Downloaded on May 28,2021 at 08:49:48 UTC from IEEE Xplore. Restrictions apply.

By default, it responds to such requests in parallel to maxi-
mize the throughput. However, the goal is difficult to be
achieved because processing requests without coordination
among nodes can make much of the node capacity run at
low average utilization. Our solution is to dynamically pri-
oritize the responding scheduling order based on global sta-
tistics. Below, we first describe the low resource utilization
problem and its impact on overall runtime, and then present
the details of priority scheduling.

Low Resource Utilization. We first give the explanation.
Given T receivers, they can send requests at the same time.
Thus, fully parallel responding requires that any sender has
at least T CPU threads, which usually goes beyond the
capacity of a single node. In this case, a sender responds to
requests by the default OS scheduling policy—FIFO (first-
in, first-out). On the other hand, real graphs generally have
heavily skewed degree distribution, yielding unbalanced
distribution of edges among Eblocks, and hence responding
workloads among pull requests. Also, by Algorithm 1, a
receiver cannot initiate new requests for a Vblock until all of
the old ones for another Vblock have been handled. Clearly,
by FIFO, processing the old, heavyweight requests will cer-
tainly delay initiating new requests. Senders waiting for
such new requests thereby block themselves, which makes
resource under-utilization.

For better understanding, we demonstrate the phenome-
non in Fig. 6. Here Rijjk is a request with responding work-
load jRijjk j or j:j for short. It is sent by receiver Tj for bjk and
processed by sender Ti. Suppose that a sender has one
thread for responding and T3 sequentially receives R321,
R331, and R311. By FIFO, T3 first responds to R321 with the
max workload, which takes so long that T1 has consumed
all buffered requests at some time x. Since Vblocks like b1
on T1 are now waiting for messages from T3 (R311), the
update focus cannot be moved to the next batch of Vblocks
like b2. The responding thread on T1 then keeps idle to wait
for new requests like R112 for b2 on T1.

Increased Overall Runtime. At an iteration, a sender Ti will
respond to all possible requests from any receiver. At time
x, some requests have already been handled while others
have not. The latter are called as the total remaining respond-
ing workload (TRRW). Now we assume all nodes have the
same computing power only for simplicity. Then if Ti has
the largest TRRW and its resource utilization is low, it
becomes the slow, straggling sender, which increases over-
all runtime in distributed environments.

Priority Scheduling. Since the low resource utilization is
caused by the individual FIFO responding design, now we
propose a well-suited priority scheduling replacement strat-
egy. The main idea is to keep the sender with the largest

TRRW busy by repeatedly running the following three steps
during a BPull iteration.

1) At any time x, seek the target sender Tî with the larg-
est TRRW and then detect whether or not it is idle.

2) If yes, further seek a target receiver T�j that has the
minimal workloads of pending requests before pro-
ceeding to a new local Vblock requiring messages
from Tî (i.e., it will initiate a request to Tî).

3) Prioritize the responding order of such pending
requests so that T�j can quickly proceed to the new
Vblock.

In step 1), computing TRRW of a sender Ti requires two
kinds of information: a list Lx

i containing all requests that
will be processed by Ti after time x and the responding
workload of each request within Lx

i . Initiating a request
Rijjk means Ti contains responding vertices as svertices
which will send messages along edges to dvertices on Tj. In
another word, there is at least one Vblock on Ti, of which
the responding indicator res and the jkth bit of the edge dis-
tribution bitmap are true (see Fig. 4). By detecting the two
variables before an iteration (now x ¼ 0), we can easily infer
L0
i for every Ti. Then at any time x, we compute Lx

i just by
removing handled requests from L0

i . On the other hand,
because requests in Lx

i have not been actually processed, we
cannot exactly compute their responding workloads.
Algorithm 2 reveals that the responding work is to read ver-
tices and edges, and then generate and transfer messages.
Thus, the total size of Vblocks and Eblocks involved in
responding is roughly proportional to the cost of disk I/O
and network communication. We thereby use it to estimate
the responding workload.

Further, selecting T�j in step 2) depends on two phases:
finding all candidate receivers in Phase-I and then performing
the selection in Phase-II. A receiver is regarded as a candidate
if it will send requests to Tî at some future time, i.e., it has at
least one element in Lx

î
of Tî. On the other hand, Tî only cares

about who can first initiate a request to make it quickly busy
again. The goal of Phase-II is then to identify such a candidate,
i.e., T�j. Note that requests are for updating vertices. A receiver
initiate them in order of processing Vblocks. The problem is
then simplified to compare the arriving times of the first
requestRîjjk

specific to Vblock bjk on each candidate Tj. How-
ever, at time x, perhaps Tj is currently processing Vblock bjs ,
and then will proceed to bjsþ1

; :::; bjk�1
and bjk . Here such

pendingVblocks from js to jk�1 do not require messages from
Tî, and hence, we call requests from them as pending requests.
We then estimate how long Tj can proceed to bjk by quantify-
ing the responding workload of pending requests (PRRW). More
specifically, a Vblock might initiate many pending requests but
only the one with the maximal workload dominates the run-
time in distributed environments. We then compute PRRW
denoted byWx

j for Tj by summing up the maximal workload
of every pending Vblock, mathematically shown in Eq. (13).
The candidatewith theminimal PRRW is then selected as T�j.

Wx
j ¼

Xk�1

l¼s

maxfjRijjl j j1� i� T g: (13)

Third, it is most likely that requests from T�j arrives at a
sender Ti later than those from other receivers. Nevertheless,

Fig. 6. Responding to Pull requests with FIFO (solid line) and priority
(dashed line) strategies. Each node has one thread for responding.

1980 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 5, MAY 2021

Authorized licensed use limited to: Ocean University of China. Downloaded on May 28,2021 at 08:49:48 UTC from IEEE Xplore. Restrictions apply.

by priority scheduling in step 3), the former are still first proc-
essed so that T�j can proceed to the target Vblock bjk without
any delay. For example, T1 in Fig. 6 is the target sender since it
is idle and has the largest TRRW. It estimates itself as the tar-
get receiver because R112 for b2 can make it busy again and
Wx

1 ¼ jR311j ¼ 1 is the minimal among candidates. R311 then
increases its priority so that T3 can immediately respond to it.

Generally, letNthd specify the number of threads used for
responding per node. The responding parallelism a is equal
to minfT ; Nthdg. We then relax the condition of seeking Tî

as “top-a largest TRRW” so that more senders can avoid
idling if a�2.

Now we clearly know we can identify Tî and T�j by ana-
lyzing the request initiation relationship between senders
and receivers. Such a global analysis requires online statis-
tics. Some are available at the very beginning of an iteration,
including res, bitmap, and the size of Vblocks and Eblocks
required by step 1), and the order of processing Vblocks
required by step 2). Also, we can easily collect other real-
time statistics including the requests that have been handled
in step 1) and the Vblocks that are currently processed on a
candidate receiver in step 2).

Last but not least, priority scheduling can also optimize
I/O costs for algorithms supporting Combiner. As analyzed
in “Memory usage” in Section 3.3, when running these algo-
rithms, sub-buffers for sending messages will compete for
limited memory resource, which affects the number of
Vblocks. However, now limited by the explicit responding
parallelism, a sender handles at most a requests at the same
time. The new design decreases the number of sub-buffers
from T down to a. We then compute the number of Vblocks
Va
i for Ti by Eq. (14), rather than Eq. (5). With the assumption

that every node has the same memory capacity, Theorem 3
tells us this design decreases the total number of Vblocks, and
hence the I/O costs (see “I/O costs” in Section 3.3).

Bi ¼
Xa
j¼1

jVjj
Va
j

þ 2jVij
Va
i

: (14)

Theorem 3. Assume that Bi ¼ Bj for 81� i; j�T . Let V and
Va respectively denote the total numbers of Vblocks without
and with the limitation of the responding parallelism. Then
V�Va for algorithms supporting Combiner.

Proof. Please see Section 3 in the supplementary file, avail-
able online. tu

5.2 Lightweight Fault-Tolerance

Today’s graph systems typically tolerate failures by check-
pointing [1], [18] which periodically archives vertex values
during the failure-free (no failure) execution and upon fail-
ures, rolls back computations on all tasks to the most
recent checkpoint for recovery. In addition, we can also log
outgoing messages per superstep [1] to confine rollback-
recovery to failed/restarted tasks only. This optimization
accelerates recovery but slows down the failure-free execu-
tion. This is because the volume of messages over super-
steps can be large and then we need to keep them on
external storage. However, hybrid frameworks allow us to
design a new lightweight fault-tolerance mechanism to

strike a good balance between recovery efficiency and fail-
ure-free performance.

Pull-Confined Failure Recovery. The main idea is to re-gen-
erate messages required by recovery using BPull, instead of
proactively logging them. Recall that BPull naturally allows
messages to be efficiently pulled on demand of specific
dvertices. Upon failures, vertices as dvertices on failed/
restarted tasks can normally broadcast requests to collect
messages for recovery. In contrast, vertices on surviving
tasks do nothing but only respond to requests. More specifi-
cally, for correct re-generation, surviving tasks need to
restore the responding context, including svertices in
Vblocks, edges in Eblocks, and the Responding Bitmap (see
Section 3.2). The former two are directly available on local
disk, while the latter is dynamically updated in memory
over iterations. We then log the latter per iteration for
retrieving information. Since the bitmap has much smaller
size than messages, the performance penalty for failure-free
computations is significantly reduced.

Since pull requests are broadcasted only by failed verti-
ces, we call the new mechanism as pull-confined failure
recovery. It can be run at any superstep, because Vblocks,
Eblocks and the bitmap are always available in BHS or
GHS even a superstep originally runs Push. In particular,
as shown in Fig. 7, if the failed superstep (t+3) originally
runs Push, we should manually switch from BPull to Push
after recovery so that messages required by Push at super-
step-(t+3) can be prepared in advance.

Performance Analysis. The difference between our pull-con-
fined recovery (CpPull) and existing log-based recovery
(CpLog) is how to get requiredmessages. Theorem 4 gives the
sufficient condition of CpPull outperforming CpLog—that is,
the ratio of failed nodes to all nodes � is less than 1

2. In real dis-
tributed environments, the probability that several nodes fail
at the same time is extremely low. Thus, CpPull is a light-
weight yet practical fault-tolerant framework.

Theorem 4. Suppose that T F of T tasks/nodes fail at superstep-
(t+1). CpPull outperforms CpLog if T F ��T , where �� 1

2.

Proof. Please see Section 4 in the supplementary file, avail-
able online. tu

6 PERFORMANCE STUDIES

We develop a prototype system HGraph4 to implement the
block-centric pulling mode (BPull), and the basic (BHS) and
generalized (GHS) switching frameworks. We compare it
against two pushing systems Giraph (Push) [8] and MOC-
graph (PushM) [12]. They are all based on Java for a fair com-
parison. However, existing pulling systems are all written
in C++ and memory-resident. We then select the well-

Fig. 7. Failure recovery with BPull.

4. https://github.com/HybridGraph/HGraph

WANG ET AL.: HGRAPH: I/O-EFFICIENT DISTRIBUTED AND ITERATIVE GRAPH COMPUTING BY HYBRID PUSHING/PULLING 1981

Authorized licensed use limited to: Ocean University of China. Downloaded on May 28,2021 at 08:49:48 UTC from IEEE Xplore. Restrictions apply.

https://github.com/HybridGraph/HGraph

known representative GraphLab (Pull) [2] as the competitor
and modify it to support disk operations to confirm the
I/O-inefficiency. Note that MOCgraph is built on top of
Giraph, but it can directly consume messages if messages
are commutative and their dvertices are in memory. It is the
up-to-date Java-based pushing system in terms of I/O-effi-
ciency. We also conduct experiments against the most
recently published pushing system GraphD [13], which is
based on C++ but we consider it for a complete performance
study. In particular, our techniques with priority scheduling
are marked with a suffix-marker “+”.

6.1 Experimental Setup

Cluster Configurations. We conduct testing on Amazon EC2.
The cluster consists of 30 nodes with one additional master
connected by a Gigabit Ethernet switch. Every node is
equipped with 4 virtual CPUs, 7.5 GB RAM and 30 GB SSD.5

The random-read/random-write/sequential-read/network
throughput srr/srw/ssr/snet is 18.2/18.2/18.3/116MB/s.6

Algorithms. We test six benchmark graph algorithms,
including PageRank, SSSP, Label Propagation Algorithm
(LPA) [19], Simulating Advertisement (SA) [20], Maximal
Independent Sets (MIS) and Bipartite Matching (BM). They
are widely used in Internet, Social Networks, and many other
applications. Table 1 summarizes their features from two per-
spectives: 1) the message compression policy: combination or
concatenation; 2) the runtime changing pattern with iterations:
gradual_ or sudden_change. gradual_change algorithms are fur-
ther divided into two categories based on whether or not all
vertices will respond to requests. In particular, PushM cannot
run concatenation algorithms sincemessages are not commuta-
tive. GHS is very suitable for sudden_change algorithms
because of its prominent prediction component. Overall, the
selected algorithms can achieve full test coverage of suitability
and efficiency for solutions involved in our experiments.
For more details about the graph algorithms, please refer to
Section 5 in the supplementary file, available online.

Graph Datasets. All tests are run over six real graphs listed
in Table 2. We convert these graphs into undirected ones as
inputs when running MIS and BM. Further, to construct a
bipartite graph for BM, vertices are hashed into two distinct
sets and only edges between the sets are preserved. Besides,
each edge is assigned a weight randomized between 0 and 1
when generating messages in SSSP. By default, a graph is
partitioned by the range method [8] for Giraph, MOCgraph,
and HGraph. For GraphLab, many intelligent methods are
provided, but only Oblivious is used since others exhibit
the similar I/O-performance. Finally, GraphD only provides
a built-in hash partitioning method.

Experiments Design. Section 6.2 studies the overall perfor-
mance to validate the effectiveness of our techniques. Sec-
tion 6.3 gives the detailed performance analysis of BHS.
Section 6.4 further tests GHS using MIS and BM. Section 6.5
explores the performance of different fault-tolerant frame-
works. Section 6.6 compares HGraph and GraphD. Section
6.7 reports the impact of graph partitioning.

In particular, we state two testing scenarios, sufficient
memory where all systems manage data in memory and lim-
ited memory where some data will be spilled onto disk. For
the latter, we give a detailed description in Section 6 in the
supplementary file, available online.

Without otherwise specified, for LPA and PageRank, the
average runtime of one superstep is reported, by totally run-
ning 30 supersteps, as the workload per superstep is con-
stant. Other algorithms are run until they converge and we
report the runtime of the entire computation. In addition,
the symbol ‘F’ indicates an unsuccessful run. All tests are
run in the synchronous manner.

6.2 Overall Performance Evaluation

We test algorithms exceptMIS andBM in two scenarios: one is
sufficient memory where push-based and pull-based modes
have different favorites as shown in Fig. 8, and the other is lim-
ited memorywhere BHSþ is the best as shown in Fig. 9. In par-
ticular, the Push versus BPull analysis in Section 4.2 reveals
that BPull consistently outperforms Push among iterations, if
Vres�V with low-budget memory allocation (for PageRank
and LPA in Fig. 9) and/or the memory resource is sufficient
(for all cases in Fig. 8). In these cases,BHS always selectsBPull
as the preferredmode and hence, they perform very similarly.

Runtime with Sufficient Memory. In general, BPull has
superior performance to Push because of combining/
concatenating messages. The performance gap is especially
large for SSSP and SA over a large diameter graph wiki. In
this case, there exists a long-tail convergent stage where
many active vertices do not generate messages after
updates, i.e., V t

res	V t
act. Then BPull might read fewer edges

than Push and PushM (see Section 2). PushM outperforms
Push because directly consuming messages can alleviate
the memory pressure and then avoid frequently starting
Java garbage collection. Another observation is that BPull
even beats Pull in some cases, as the former sends fewer

TABLE 1
Features of Benchmark Graph Algorithms

gradual_change
(Vres�V)

gradual_change
(Vres 6�V)

sudden_change

combination PageRank SSSP MIS
concatenation LPA SA BM

TABLE 2
Real Graph Datasets (M: Million)

Graph # Vertices # Directed or
undirected edges

Disk size

livej 7 4.8M 68/86M 0.5/0.6 GB
wiki8 5.7M 130/209M 1.0/1.6 GB
ork9 3.1M 234/234M 1.6/1.7 GB
twi10 41.7M 1,470/2,426M 12.9/20.6 GB
fri11 65.6M 1,810/3,699M 17.0/32.0 GB
uk12 105.9M 3,740/6,638M 33.0/56.2 GB

5. We also run all tests on a local cluster with HDD and achieve the
similar performance improvement.

6. Reported by fio-2.0.13 and iperf-2.0.5.

7. http://snap.stanford.edu/data/soc-LiveJournal1.html
8. http://snap.stanford.edu/data/web-BerkStan.html
9. http://snap.stanford.edu/data/web-BerkStan.html
10. http://snap.stanford.edu/data/web-BerkStan.html
11. http://snap.stanford.edu/data/web-BerkStan.html
12. http://snap.stanford.edu/data/web-BerkStan.html

1982 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 5, MAY 2021

Authorized licensed use limited to: Ocean University of China. Downloaded on May 28,2021 at 08:49:48 UTC from IEEE Xplore. Restrictions apply.

http://snap.stanford.edu/data/soc-LiveJournal1.html
http://snap.stanford.edu/data/web-BerkStan.html
http://snap.stanford.edu/data/web-BerkStan.html
http://snap.stanford.edu/data/web-BerkStan.html
http://snap.stanford.edu/data/web-BerkStan.html
http://snap.stanford.edu/data/web-BerkStan.html

pull requests and can offer a comparable message transfer
efficiency by combination. Finally, without I/O operations,
priority scheduling brings marginal benefit. We then omit
the report to reduce clutter.

Runtime with Limited Memory. The speedup of BPull com-
pared with Push is up to a factor of 56 (PageRank over uk).
Even compared with PushM, BPull still offers roughly 15x
speedup in the same case. For SSSP and SA, the number of
messages dynamically changes, which weakens the competi-
tive advantage of pulling and hence BPull does not work well
as expected. For example, BPull runs only 1.7x faster than
PushM. However, by switching modes, BHS runs up to 36
and 7 percent faster thanBPull, respectively forSSSP andSA.

Priority scheduling creates another performance gap
between BPull and Push/PushM. Here we set a ¼ 5 because
one node can totally run 8 CPU threads and three of them
are respectively used by the file system, the daemon pro-
cess, and the vertex update function. We find that the larg-
est speedup is increased to 70x compared with Push and
19x against PushM. Among all cases, we gain the best run-
time improvement on twi. The reason is that the highly
skewed power-law degree distribution exacerbates the
unbalanced responding workload distribution among
requests. The default FIFO policy cannot cope with this
challenge very well. Further, BHSþ also includes an engi-
neering effort—recording the offset of edges per svertex to
skip useless edges in Push. It brings great runtime reduction
on wiki because many supersteps run Push in the long-tail
convergent stage.

I/O costs with Limited Memory. Fig. 10 reports I/O costs
denoted by the total number of read and write bytes. Pull
entails substantial costs because of the random and frequent
access to svertices. On the other hand, PushM beats Push
since messages sent for in-memory dvertices are directly
consumed. In particular, when running SSSP over twi,
BPull usually costs more than Push and PushM. That means
the gain achieved by eliminating message I/Os cannot
defeat the cost incurred by accessing svertices and auxiliary
data of fragments. However, BHS can optimize it by switch-
ing modes adaptively. Note that on large graphs twi, fri, and
uk, a¼ 5 < T ¼ 30. Priority scheduling thereby reduces I/O
costs for PageRank and SSSP because of the decreased
number of Vblocks. Further, by recording edge offsets, we
can observe the significant I/O reduction in BHSþ for
SSSP and SA over wiki.

6.3 Analysis of BHS

We now validate the effectiveness of BHS using the same
setting in Fig. 9. We first explore the impact of hardware
characteristics on the performance metric Q. A detailed
analysis is then given to show the resource requirements
when switching modes. Here, we test SSSP over twi since
BHS achieves the most gain in this case.

Impact of Hardware Characteristics. We plot values of Qt

under HDD13 and SSD in Fig. 11a. There exist two switching

Fig. 8. Runtime with sufficient memory. BPull/BHS is comparable to or even better than competitors.

Fig. 9. Runtime with limited memory.

Fig. 10. I/O costs with limited memory.

13. Now each Amazon EC2 node is equipped with 30GB HDD (low
disk throughput) while other configurations remain unchanged.

WANG ET AL.: HGRAPH: I/O-EFFICIENT DISTRIBUTED AND ITERATIVE GRAPH COMPUTING BY HYBRID PUSHING/PULLING 1983

Authorized licensed use limited to: Ocean University of China. Downloaded on May 28,2021 at 08:49:48 UTC from IEEE Xplore. Restrictions apply.

points respectively at the 10th and the 25th supersteps, both
of which do not change with different external storage
mediums. We now give the explanation. When the sign of
Qt changes, the number of messages is small. Together with
the fact that snet
srr=srw=ssr and srr, srw, and ssr are close
in values, by Eq. (11), we know that the sign of Qt is mainly
dominated by Cio, which is orthogonal to hardware
characteristics.

Resource Requirements. Fig. 11b, 11c, 11d respectively
report the change of I/O-pressure, network communication
costs, and memory usage, among supersteps. In the case of
“BPull! Push” at superstep-11, the resource requirements
increase, because messages which will be handled at the
next superstep in Push are now processed in advance. The
sudden increase of requirements may slightly slow down
the performance due to resource contention. However, this
can be easily offset by the switching gains. By contrast,
when switching from Push to BPull at superstep-26, mes-
sages that should have been generated and pushed at this
superstep will be pulled at the next superstep. The resource
requirements will not increase. Note that because of addi-
tionally maintained Metadata of VE-BLOCK, BHS consumes
more memory than Push even though the pushing mode is
selected.

6.4 Analysis of GHS

We then verify the effectiveness of GHS using MIS and BM
with limited memory. Because the I/O-inefficiency of Pull has
been validated in Section 6.2, we remove it from the tests.
Besides, GHS cannot benefit from priority scheduling
because of frequent switching operations. We then disable
this optimization.

The runtime comparison results are presented in Fig. 12.
Overall, GHS generates great performance improvement.
Taking MIS as an example, it is approximately 48 percent
faster than BPull over twi. For BM, the improvement is even
up to 65 percent over fri.

We then design experiments to show how likelyGHS can
seek the optimal mode. We show the mode decision per

superstep on twi, fri, and uk (Fig. 13a), since GHS works
especially well on these large graphs. We further demon-
strate the runtime change on the graph with the most signif-
icant performance improvement (Fig. 13b). Clearly, GHS
can exactly capture the runtime variation and then select
the optimal for a specific superstep.

6.5 Fault Tolerance

We next test fault-tolerance. Besides CpLog and our CpPull,
we also test another two solutions to explore the tradeoff
between the archiving data cost and the recovery efficiency.
One is Scratch that recomputes from scratch upon failures
since nothing is prepared during the failure-free execution.
The other is Cp that periodically makes a checkpoint of ver-
tex values [18]. All tests are run on top of BHS with limited
memory. Besides, we simulate a failure by manually killing a
task at the end of iterations. By offline analysis, the check-
pointing interval is set as 10.

Fig. 14 shows the overall runtime of the entire computa-
tion w/ and w/o failures, respectively. Compared with Cp,
CpLog greatly drops the runtime when encountering fail-
ures, at the expense of degrading the failure-free execution.
The performance loss is up to 52 percent over uk. However,
the degradation in CpPull is less significant because no mes-
sage is logged. Even so, it can still quickly recover failures
by re-generating messages on-demand. The lightweight log-
ging policy and the fast recovery method then yield up to 32
percent improvement (over uk), compared with CpLog.

We then explore the performance features by varying the
number of failed tasks. Shown in Fig. 15a, both CpLog and
CpPull scale with failed tasks due to increased recovery
workloads, while Cp does not since it always rolls back the
computation on all tasks. By Theorem 4, CpPull outperforms
CpLog when T F � 1

2 T ¼ 15 and so it does. However, even
when T F > 15, we still observe superior performance. This
is because under CpLog, restarted tasks also need to log
newly generated messages for possible failures in the
future, which increases the runtime especially when the
number of failed tasks is large (see Fig. 15b).

Fig. 11. Variation of Qt, I/O costs, network costs, and memory usage for BHS (SSSP over twi, limited memory).

Fig. 12. Runtime of GHS (limited memory). Fig. 13. Mode selection on BM (limited memory).

1984 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 5, MAY 2021

Authorized licensed use limited to: Ocean University of China. Downloaded on May 28,2021 at 08:49:48 UTC from IEEE Xplore. Restrictions apply.

6.6 Comparison With GraphD

Next we compare our Java-based HGraph with the state-of-
the-art C++-based GraphD, by running the widely used
benchmark PageRankwith limited memory. HGraph employs
the optimal BPull with priority scheduling. In particular,
GraphD can efficiently combine messages by recoding vertex
ids (“ID”). As shown in Fig. 16a, from the runtime perspec-
tive, HGraph is 9.7 and 7.0 times faster, at most, thanGraphD
and GraphD+ID, respectively. The outstanding performance
comes from zero message I/Os and low random read costs.
We then measure the elapsed time of loading graph and
buildingVE-BLOCK inHGraph.We compare it to the prepro-
cessing time of competitors (Fig. 16b). Because GraphD+ID
incurs extra effort for recoding IDs, it takes an average of 4
times longer than the preprocessing time of GraphD.
HGraph directly stores the loaded sub-graph in each task to
minimize the partitioning cost. Thus, even with the time of
building VE-BLOCK, it still provides a comparable cost to
GraphD. Together, HGraph achieves overall success
although C++ is usuallymore efficient than Java.

6.7 Impact of Graph Partitioning

Fig. 17 finally shows the impact of different graph partition-
ing strategies on HGraph, all of which try to improve the
locality of partitioned sub-graphs to reduce network costs,
and are scalable to very large graphs. Specifically, the com-
petitors include: Range [8] preserving locality naturally pro-
vided by input graphs; Hash, a widely used method with
good efficiency but poor locality; and LDG [21] and Fen-
nel [22], two variants streaming graph data and improving
locality by the distribution of already placed vertices.

By PageRank, we observe a slight variation in runtime in
sub-figure(a) on all graphs except uk. We explain it from
two perspectives. First, sub-figure(b) shows that good local-
ity facilitates clustering edges and then reduces the number
of fragments, but the effect is limited. Thus, the costs of
reading svertices and auxiliary data will slightly decrease.
Second, sub-figure(c) validates that advanced partitioning

methods indeed optimize the number of network messages
across sub-graphs. However, HGraph can completely com-
bine messages sent to the same dvertex at the sender side.
This optimization significantly compresses network mes-
sages and hence weakens the effect of partitioning, as
shown in sub-graph(d). The exception is uk with very good
locality in input data. Range fully utilizes this advantage
and then outperforms other competitors in terms of disk I/
Os and network costs.

6.8 Extended Discussion

Now we have known that HGraph is I/O-efficient. Besides,
its built-in combination or concatenation design can signifi-
cantly reduce the network I/O costs, which is also the main
goal of graph partitioning. As a result, the performance of
HGraph is not very sensitive to different partitioning strate-
gies (see Fig. 17). Note also that the new BPull component
just manages pull requests in a block-centric manner, but
messages are still generated by the traditional vertex-centric
principle and then transmitted along edges one-hop per
superstep. Thus, the message spreading speed, or the algo-
rithm convergence speed, will not be affected.

Finally, our techniques can be implemented on top of any
pushing- or pulling-based underlying systems. No matter
which one is selected, we should implement another one and
then the switching framework. In particular, VE-BLOCK
required by BPull can be built by further partitioning the sub-
graph on each node. We make our project publicly available
so that users can quickly test our techniques and/or their own
advanced ideas.

Fig. 14. Overall runtime of LPA.

Fig. 15. Performance analysis when varying the number of failed tasks
(PageRank over uk).

Fig. 16. Performance analysis:GraphD versus HGraph (PageRank).

Fig. 17. Impact of different graph partitioning strategies (PageRank).

WANG ET AL.: HGRAPH: I/O-EFFICIENT DISTRIBUTED AND ITERATIVE GRAPH COMPUTING BY HYBRID PUSHING/PULLING 1985

Authorized licensed use limited to: Ocean University of China. Downloaded on May 28,2021 at 08:49:48 UTC from IEEE Xplore. Restrictions apply.

7 RELATED WORK

We now summarize representative distributed graph sys-
tems and existing fault-tolerant techniques, to highlight our
contributions.

Push-Based Systems. Pushing naturally expresses the
logic of graph algorithms. Many systems are then push-
based [1], [4], [5], [6], [23], [24], [25], [26], [27] and work
well when all data are kept in memory. There exist efforts
targeting the disk setting for better scalability. Early pio-
neers [7], [8], [9], [10], [11], [28], [29], [30], [31] manage
data on HDFS or local disk in a naive way, rendering them
I/O-inefficient. If messages are commutative and their
dvertices are in memory, MOCgraph [12] directly con-
sumes them to reduce I/O costs. Chaos [32] focuses on
streaming edges and ignores communication costs with the
assumption of high-speed network. GraphD [13], as well
as our HGraph, removes this assumption since many clus-
ters still work in the Gigabit Ethernet network. The closed-
source Turbograph++ [14] overlaps opereations of CPU,
disk and network, for full resource utilization, which is
nice complement to our design.

Giraph++ [6] and Blogel [23] propose a complete block-
centric model where vertices in the same block can freely
update themselves and directly communicate with each
other. Differently, HGraph still follows the vertex-centric
programming principle for easy use although BPull can pull
messages in blocks. Blogel further supports block-level com-
munication for very specific algorithms like connected com-
ponents where vertices within one block share the same
value. It is technically orthogonal to our combining or
concatenating technique used in BPull.

Pull-Based Systems. To our knowledge, there exist several
pull-based systems designed for memory-resident analy-
sis [2], [18], [33], [34]. All of them follow the vertex-centric
pulling principle and hence suffer from performance pen-
alty caused by random reads in disk scenarios. In particular,
GraphLab replicates vertices for efficient communication [2].
However, memory resources can be quickly exhausted [12],
which severely degrades the performance. Some systems
state that they support Push and Pull [35], [36]. While, only
one is used for a given algorithm. In particular, Pregel+ [37]
can run the two modes at different supersteps but only for
operating different kinds of messages.

Fault Tolerance. Most fault-tolerance techniques are based
on checkpointing [1], [38] and there exist many efforts for
optimization [15], [18], [39]. Additionally logging messages
can further boost the recovery efficiency [1], [40] but at the
expense of failure-free performance loss. However, our solu-
tion achieves an overall success by BPull. Besides, reactive
solutions can recover failures without checkpointing, but
they either replicate vertices [41] in limited memory or
work for specific applications [42].

8 CONCLUSION AND FUTURE WORK

This paper proposes a new adaptive and I/O-efficient mes-
sage processing mechanism for graph computing on cloud.
For general purpose, we combine existing pushing and our
improved pulling modes with different switching principles
by investigating I/O access patterns. We also design some
optimizations for efficiency, including priority scheduling

and lightweight fault-tolerance. Experiments verify the
great advantage of our proposals.

Note that some graph mining algorithms like pattern
matching and dense subgraph retrieval, will broadcast sub-
graphs as messages, and the size of a subgraph changes
with iterations. That challenges the fixed message buffer
budget and the static VE-BLOCK design, and might result
in the message buffer overflow. However, dynamically
adjusting the granularity of VE-BLOCK can change the
memory requirement of buffering messages. We plan to
investigate this solution as future work.

ACKNOWLEDGMENTS

This work was supported by the National Key R&D Program
of China (2018YFB1003404), the National Natural Science
Foundation of China (61902366, 61902365, and 61872070),
China Postdoctoral Science Foundation Grant (2019M652474
and 2019M652473), and the Research Grants Council of the
Hong Kong SAR (China No. 14203618 and 14202919). The
authors also would like to thank all anonymous reviewers.
Thisworkwas partially done atNortheasternUniversity.

REFERENCES

[1] G. Malewicz et al., “Pregel: A system for large-scale graph proc-
essing,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2010,
pp. 135–146.

[2] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“Powergraph: Distributed graph-parallel computation on natural
graphs,” inProc. 10thUSENIXConf.Operating Syst.Des. Implementation,
2012, vol. 12,Art. no. 2.

[3] M. Onizuka, T. Fujimori, and H. Shiokawa, “Graph partitioning
for distributed graph processing,” Data Sci. Eng., vol. 2, no. 1,
pp. 94–105, 2017.

[4] S. Salihoglu and J. Widom, “GPS: A graph processing system,” in
Proc. 25th Int. Conf. Sci. Statistical DatabaseManage., 2013, Art. no. 22.

[5] B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph engine
on a memory cloud,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2013, pp. 505–516.

[6] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson,
“Think like a graph,” Proc. VLDB Endowment, vol. 7, no. 3,
pp. 193–204, 2013.

[7] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “HaLoop: Effi-
cient iterative data processing on large clusters,” Proc. VLDB
Endowment, vol. 3, no. 1/2, pp. 285–296, 2010.

[8] “Apache giraph.” 2019. [Online]. Available: http://giraph.
apache.org/

[9] R. Chen, X. Weng, B. He, andM. Yang, “Large graph processing in
the cloud,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2010,
pp. 1123–1126.

[10] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “GraphX: Graph processing in a distributed data-
flow framework,” in Proc. 11th USENIX Conf. Operating Syst. Des.
Implementation, 2014, pp. 599–613.

[11] Y. Bu, V. Borkar, J. Jia, M. J. Carey, and T. Condie, “Pregelix:
Big(ger) graph analytics on a dataflow engine,” Proc. VLDB
Endowment, vol. 8, no. 2, pp. 161–172, 2014.

[12] C. Zhou, J. Gao, B. Sun, and J. X. Yu, “Mocgraph: Scalable distrib-
uted graph processing using message online computing,” Proc.
VLDB Endowment, vol. 8, no. 4, pp. 377–388, 2014.

[13] D. Yan et al., “GraphD: Distributed vertex-centric graph process-
ing beyond the memory limit,” IEEE Trans. Parallel Distrib. Syst.,
vol. 29, no. 1, pp. 99–114, Jan. 2018.

[14] S. Ko and W.-S. Han, “TurboGraph++: A scalable and fast
graph analytics system,” in Proc. Int. Conf. Manage. Data, 2018,
pp. 395–410.

[15] C. Xu, M. Holzemer, M. Kaul, and V. Markl, “Efficient fault-toler-
ance for iterative graph processing on distributed dataflow sys-
tems,” in Proc. IEEE 32nd Int. Conf. Data Eng., 2016, pp. 613–624.

1986 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 5, MAY 2021

Authorized licensed use limited to: Ocean University of China. Downloaded on May 28,2021 at 08:49:48 UTC from IEEE Xplore. Restrictions apply.

http://giraph.apache.org/
http://giraph.apache.org/

[16] Z. Wang, Y. Gu, Y. Bao, G. Yu, and J. X. Yu, “Hybrid Pulling/
Pushing for I/O-Efficient distributed and iterative graph
computing,” in Proc. Int. Conf. Manage. Data, 2016, pp. 479–494.

[17] Z. Shang and J. X. Yu, “Catch thewind: Graphworkload balancing on
cloud,” inProc. IEEE 29th Int. Conf. Data Eng., 2013, pp. 553–564.

[18] J. Xue, Z. Yang, Z. Qu, S. Hou, and Y. Dai, “Seraph: An efficient,
low-cost system for concurrent graph processing,” in Proc. 23rd
Int. Symp. High-Perform. Parallel Distrib. Comput., 2014, pp. 227–238.

[19] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algo-
rithm to detect community structures in large-scale networks,” Phys.
Rev. E, vol. 76, no. 3, 2007,Art. no. 036106.

[20] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and
P. Kalnis, “Mizan: A system for dynamic load balancing in large-
scale graph processing,” in Proc. 8th ACM Eur. Conf. Comput. Syst.,
2013, pp. 169–182.

[21] I. Stanton and G. Kliot, “Streaming graph partitioning for large
distributed graphs,” in Proc. 18th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2012, pp. 1222–1230.

[22] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic,
“Fennel: Streaming graph partitioning for massive scale graphs,”
in Proc. 7th ACM Int. Conf. Web Search Data, 2014, pp. 333–342.

[23] D. Yan, J. Cheng, Y. Lu, and W. Ng, “Blogel: A block-centric
framework for distributed computation on real-world graphs,”
Proc. VLDB Endowment, vol. 7, no. 14, pp. 1981–1992, 2014.

[24] S. Tasci and M. Demirbas, “GiraphX: Parallel yet serializable
large-scale graph processing,” in Proc. 19th Int. Conf. Parallel
Process., 2013, pp. 458–469.

[25] J. Yan, G. Tan, and N. Sun, “GRE: A graph runtime engine for large-
scale distributed graph-parallel applications,” 2013, arXiv:1310.5603.

[26] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi, “Naiad: A timely dataflow system,” in Proc. 24th ACM
Symp. Operating Syst. Principles, 2013, pp. 439–455.

[27] W. Fan et al., “Parallelizing sequential graph computations,” in
Proc. SIGMOD, 2017, pp. 495–510.

[28] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “PEGASUS: A peta-
scale graph mining system implementation and observations,” in
Proc. 9th IEEE Int. Conf. Data Mining, 2009, pp. 229–238.

[29] U. Kang, H. Tong, J. Sun, C.-Y. Lin, andC. Faloutsos, “GBASE: A scal-
able and general graph management system,” in Proc. 17th ACM
SIGKDD Int. Conf. Knowl. DiscoveryDataMining, 2011, pp. 1091–1099.

[30] S. Seo, E. J. Yoon, J. Kim, S. Jin, J.-S. Kim, and S. Maeng, “HAMA:
An efficient matrix computation with the MapReduce frame-
work,” in Proc. IEEE 2nd Int. Conf. Cloud Comput. Technol. Sci.,
2010, pp. 721–726.

[31] “Titan.” 2019. [Online]. Available: http://titan.thinkaurelius.com/
[32] R. Amitabha, B. Laurent, M. Jasmina, and Z. Willy, “Chaos: Scale-

out graph processing from secondary storage,” in Proc. 25th Symp.
Operating Syst. Principles, 2015, pp. 410–424.

[33] I. Hoque and I. Gupta, “LFgraph: Simple and fast distributed
graph analytics,” in Proc. 1st ACM SIGOPS Conf. Timely Results
Operating Syst., 2013, Art. no. 9.

[34] L.-Y. Ho, T.-H. Li, J.-J. Wu, and P. Liu, “Kylin: An efficient and
scalable graph data processing system,” in Proc. IEEE BigData,
2013, pp. 193–198.

[35] W. Hant et al., “Chronos: A graph engine for temporal graph analy-
sis,” in Proc. 9th Eur. Conf. Comput. Sys., 2014, Art. no. 1.

[36] R. Cheng et al., “Kineograph: Taking the pulse of a fast-changing
and connected world,” in Proc. 7th ACM Eur. Conf. Comput. Syst.,
2012, pp. 85–98.

[37] D. Yan, J. Cheng, Y. Lu, andW.Ng, “Effective techniques formessage
reduction and load balancing in distributed graph computation,” in
Proc. 24th Int. Conf.WorldWideWeb, 2015, pp. 1307–1317.

[38] “Apache spark.” [Online]. Available: http://spark.apache.org/
[39] Z.Wang, Y.Gu, Y. Bao, G. Yu, andL.Gao, “An i/o-efficient and adap-

tive fault-tolerant framework for distributed graph computations,”
Distrib. Parallel Databases, vol. 35, no. 2, pp. 177–196, 2017.

[40] Y. Shen, G. Chen, H. Jagadish, W. Lu, B. C. Ooi, and B. M. Tudor,
“Fast failure recovery in distributed graph processing systems,”
Proc. VLDB Endowment, vol. 8, no. 4, pp. 437–448, 2014.

[41] M. Pundir, L. M. Leslie, I. Gupta, and R. H. Campbell, “Zorro:
Zero-cost reactive failure recovery in distributed graph proc-
essing,” in Proc. 6th ACM Symp. Cloud Comput., 2015, pp. 195–208.

[42] S. Schelter, S. Ewen, K. Tzoumas, and V. Markl, “All roads lead to
rome: Optimistic recovery for distributed iterative data proc-
essing,” in Proc. 22nd ACM Int. Conf. Inf. Knowl. Manage., 2013,
pp. 1919–1928.

Zhigang Wang received the PhD degree in com-
puter software and theory from Northeastern Uni-
versity, China, in 2018. He is currently a lecturer
with the College of Information Science and Engi-
neering, Ocean University of China. His research
interests include cloud computing, distributed
graph processing, and machine learning. He
is a member of the China Computer Federation
(CCF). He received the CCF Outstanding
Doctoral Dissertation Award in 2018.

Yu Gu received the PhD degree in computer soft-
ware and theory from Northeastern University,
China, in 2010. Currently, he is a professor and
the PhD supervisor with Northeastern University.
His current research interests include big data
analysis, spatial data management, and graph
data management. He is a senior member of the
China Computer Federation (CCF).

Yubin Bao received the PhD degree in computer
software and theory from Northeastern University,
China, in 2003. Currently, he is a professor with
Northeastern University. His current research inter-
ests include data warehouse andOLAP, graph data
management, and cloud computing. He is a senior
member of theChinaComputer Federation (CCF).

Ge Yu received the PhD degree in computer sci-
ence from Kyushu University of Japan, in 1996.
He is currently a professor and the PhD supervisor
with Northeastern University, China. His research
interests include distributed and parallel database,
OLAP and data warehousing, data integration,
graph data management, etc. He is a member
of the ACM, a senior member of the IEEE, and a
fellow of the China Computer Federation (CCF).

Jeffrey Xu Yu has held faculty positions with the
University of Tsukuba and Australian National
University. Currently, he is a professor with the
Department of Systems Engineering and Engi-
neering Management, Chinese University of
Hong Kong, Hong Kong. His current research
interests include graph processing and social net-
work analysis. He is a member of the ACM and a
senior member of the IEEE.

Zhiqiang Wei received the PhD degree from
Tsinghua University, China, in 2001. He is cur-
rently a professor with the Ocean University
of China. He is also the director of the High
Performance Computing Center, Pilot National
Laboratory for Marine Science and Technology
(Qingdao). His current research interests include
in the fields of intelligent information processing,
social media, and big data analytics. He is a
member of the IEEE and CCF.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

WANG ET AL.: HGRAPH: I/O-EFFICIENT DISTRIBUTED AND ITERATIVE GRAPH COMPUTING BY HYBRID PUSHING/PULLING 1987

Authorized licensed use limited to: Ocean University of China. Downloaded on May 28,2021 at 08:49:48 UTC from IEEE Xplore. Restrictions apply.

http://titan.thinkaurelius.com/
http://spark.apache.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

