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ABSTRACT Differential privacy (DP) is a promising scheme for releasing the results of statistical queries
on sensitive data. This paper focuses on top-k frequent columns publication on sensitive data, with high
result utility under differential privacy. Existing works directly select frequent columns from all columns
(called one-phase scheme), which is far from ideal due to the large privacy consumption or misjudgments
for columns with frequencies close to the frequency of the kth frequent column (called near-k-fluctuation-
column). This paper presents a new solution Two Phase Selection (TPS) to carefully choose frequent
columns in two phases. The main idea is to classify columns into two distinct categories based on whether
it is one near-k-fluctuation-column or not. Frequent columns are chosen from the two categories using
different techniques, which is totally different from existing solutions without classifying. Furthermore,
by analyzing the distribution of near-k-fluctuation-columns, we introduce a block-centric column-choosing
method privacy-free-mechanism (PFM). By partitioning columns into blocks, PFM makes the privacy
consumption proportional to the number of blocks, instead of frequent columns. Extensive experiments on
real datasets show that our proposals outperform the state-of-the-art techniques for top-k column publication.

INDEX TERMS Differential privacy, privacy protection, top-k , high dimensional dataset, privacy consump-
tion, block.

I. INTRODUCTION
With the increasing volumes of personal data collected by
mobile devices and web services, privacy protection has
become a hot research topic. In particular, for the high-
dimensional privacy datasets, a lot of works [1]–[3] have
been proposed to publish the frequency of each column in
the dataset, i.e., column frequencies. However, in some sce-
nario, the users or administrators are more interested in the
top-k frequent columns. For example, the tourists are more
interested in the top-k popular scenic spots (columns) in a
city. And the marketers are concerned about top-k hot search
terms (columns) in the network. This paper focuses on the
privacy issues that arise in publishing top-k frequent columns,
i.e., finding top-k heavy hitters [4]–[6]. Top-k frequent
columns help managers get to know the data distribution
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and then make smart decisions to improve the quality of
service. Specifically, let D be a database, in which every
record is a binary vector {0, 1}d . Note that d may reach tens
of hundreds (i.e., high-dimensional dataset) in many practical
applications. The frequency of column j indicates the number
of ‘‘1’’s in this column, i.e., the number of records whose
value in the jth column equals to ‘‘1’’. And the top-k frequent
columns show k columns with the largest frequencies. Note
that frequent items mining, as a vital fundamental step in the
classic and widely studied top-k frequent itemsets mining
problem [7]–[10], is consistent with the frequent columns
mining, if every item is regarded as one column in the high
dimensional dataset.

Take the purchased information generated from web
e-commerce platforms (e.g., Amazon [11], Ebay [12]) as an
example. In the database D1, every column indicates one
item. User i is associatedwith the ith record inD1 and element
D(i, j) in the jth column is set to 1 if user i purchased item j.
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FIGURE 1. An Example of top-k frequent columns publication.

As shown in Figure 1(a), every row lists the items purchased
by one user. For example, u1 has purchased items {I1, I2, I4}.
And the grey histogram in Figure 1(c) shows the purchased
frequencies of items. For instance, since u2 and u4 purchased
item I3, the frequency of I3 is 2. Obviously, the top-2 frequent
items in the database D1 are items I1 and I2.
However, the high-dimensional records involve many per-

sonal information and hence directly publishing their top-k
statistic values breaks users’ privacy. Specifically, in Figure 1,
if the purchased item list of u2 changes from {I1, I2, I3}
to {I1, I3, I4}, the top-2 frequent items are {I1, I4} instead
of {I1, I2}. Such deviation may inspire adversaries to infer
u2’s purchased information, if adversaries hold background
knowledge on all purchased list except u2’s.

Recently differential privacy (DP) [13]–[15] as a well-
known privacy protection technique, has attracted a lot of
attentions, since it can provide rigorous theoretical pri-
vacy guarantee against adversaries with arbitrary background
knowledge. This paper thereby aims to publish top-k fre-
quent columns in ε-differential privacy, where ε is a param-
eter to control the degree of privacy protection. Sensitivity,
as another key parameter in DP, indicates the maximum
impact a single record can have on all column frequencies.
Typically, to guarantee DP, noises proportional to the sensitiv-
ity have to be injected into published results. Thus, the great
challenge in our problem is that the high dimensional feature
in real datasets usually leads to a large sensitivity, and finally
makes published results useless.

There are two lines of works for publishing the top-k
frequent columns by clarifying the existing methods, which
are adopted as the fundamental step (frequent items min-
ing) in the top-k frequent itemsets mining. The first line
is designed based on the publication of column frequenc-
ies [1]–[3]. Specifically, it publishes the column frequencies,
sorts columns in descending order of their noisy frequencies,
and then outputs top-k ones. However, the noises in frequen-
cies make the columns with frequencies close to the one of
the kth frequent column (called near-k-fluctuation-column)
be misjudged, leading to inaccurate results. The other
line [16], [17] invokes exponential mechanism to sample one
frequent column with probability inversely proportional to k .
This is performed k times to get published results. However,

it does not work well for a large k in high-dimensional
applications.

This paper solves the utility problem by proposing a
new Two Phase Selection (TPS) method. Before describing
TPS, we first introduce an observation that the ability
of columns to tolerate noises varies with their frequency
ranks. For example, Figure 2 shows the frequencies of 9
columns {A,B,C,D,E,F,G,H , I } respectively. Circles/
triangles stand for the true/noisy frequencies. Obviously,
the true top-5 frequent columns are {A,B,C,D,E}. But
based on the noisy frequencies, they are {A,B,E,F,G}.
This is because that noises in frequencies make columns
{C,D,F,G}with frequency ranks around k change from fre-
quent (unfrequent) to unfrequent (frequent). These columns,
whose noisy frequencies are located in [̂τ − δ, τ̂ + δ], form
unsafe zone as they are easily affected by noises. Here, τ̂ and
δ are parameters used to limit the size of the unsafe zone and
will be explained in Section IV in detail. By contrast, safe
zone consists of other columns. Since the ranks of columns
in safe zone are far away from k , they can tolerate noises.
TPS leverages the above observation to choose top-k results.
The key idea of TPS is firstly choosing frequent columns
from safe zone (the first phase) and then getting the remaining
results from unsafe zone (the second phase), so that we can
employ different techniques based on the different noise-
tolerance abilities of different zones.

Intuitively, TPS is a hybrid solution which is built by
combing the two lines of works mentioned above, in order
to handle the two-phase selection tasks respectively. Specif-
ically, in the first phase, we use the first line method to
publish only some frequent columns in safe zone, instead in
the whole column domain, as a part of final results. Since
frequencies of columns in safe zone are much higher than
that of the kth frequent column, the impact of noises is nearly
negligible and hence they are really frequent with a high
probability. In the second phase, the exponential mechanism
is used to choose the remaining frequent columns from unsafe
zone. Usually the number of remaining frequent columns
k1 is much less than k . Then the exponential mechanism is
invoked only k1 times (k1 < k). Thus, the reduced execution
times contribute to improving the probability of choosing true
frequent columns.
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FIGURE 2. An example of the two-phase selection method.

Additionally, we propose a new block-centric column-
choosing solution to further reduce the privacy consump-
tion caused by exponential mechanism in the second phase.
We find that either frequent columns or unfrequent columns
usually appear consecutively in unsafe zone, since the
columns in unsafe zone are sorted based on their noisy fre-
quencies. That motivates us to split the columns into blocks so
that we can apply a newly designed DP mechanism privacy-
free-mechanism (PFM) to get required results in a block-
centric way. In particular, PFM detects the boundary of every
block using a modified sparse vector technique (SVT) [18].
The original SVT is used to release c columns with frequency
above τ from a set of columns, where τ is the frequency of the
cth frequent column. To guarantee DP, SVT judges whether
one column is frequent or not by comparing the noisy versions
of τ and the column frequency, where every found frequent
column imports a part of privacy consumption. Our modifi-
cation is that based on the previous column judgement results
output in SVT, the noisy version of τ is updated and the noise
scales in the column frequencies are dynamically adjusted
to make less noises be injected to column frequencies. With
PFM, some frequent columns can be chosen without pri-
vacy consumption, since there are possibly multiple frequent
columns in one block. In this way, the privacy consumption of
PFM is proportional to the number of blocks, which is smaller
than that of frequent columns. Consequently, compared with
exponential mechanism and original SVT, PFM chooses the
frequent columns with lower privacy consumption.

As a short summary, the major contributions of our work
are summarized as below:
• We present a novel and principled adaptive two-phase
selection framework to publish the top-k frequent
columns by taking advantage of the different noise-
tolerance abilities of columns in different zones.

• We design a new block-centric column-choosing mech-
anism denoted by PFM to derive the frequent columns
dynamically. And the mechanism makes the privacy
consumption proportional to the number of blocks,
which is smaller than the number of frequent columns.
Besides, we theoretically analyze the privacy guarantee
of the mechanism PFM.

• We conduct extensive experiments using real datasets to
demonstrate that our method significantly outperforms
the baseline approaches.

The rest of this paper is organized as follows. Section II
reviews the related works. Section III introduces definitions
about DP and the two existing lines for publishing top-k
frequent columns under DP. Section IV proposes our two
phase selection method. Section V presents privacy-free-
mechanism. Section VI reports the experiment results and
Section VII concludes this paper.

II. RELATED WORK
Differential privacy [2], [16], [17], [19], as a rigorous privacy
protection model, has attracted a lot of attention, since it can
provide theoretical privacy guarantee against adversaries with
arbitrary background information. Before introducing the
definition of differential privacy, we first give the definition
of neighboring database in the following.
Definition 1 (Neighboring database [20]): Given two

databases D1 and D2, if we can get D2 from D1 by delet-
ing or adding one record t, i.e., D2 = D1 ∪ {t} or D1 =

D2∪{t}, the two databases are called as a pair of neighboring
databases.
Definition 2 (ε-DP [20]): Given a randomized algorithm

A,A satisfies ε-DP if for any two neighboring databases D1
and D2, and any output O of A, there exists

P[A(D1) = O] ≤ eεP[A(D2) = O].
Many representative efforts [1]–[3], [17], [19] have been

devoted to publishing statistics for high-dimensional data.
Existing works can be classified into three categories. We
elaborate them and then distinguish our work from them as
follows.

A. PUBLISHING NOISY DATABASE [21], [22]
This kind of works aims at publishing one synthetic database
in order to support any possible query, including column
frequencies query and top-k frequent columns query. These
works [21], [22] depend on the bayesian network and context-
free taxonomy tree to publish synthetic databases respec-
tively. However, publishing synthetic databases required by
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the general purpose consumes much privacy budget since a
lot of information is involved. That is the reason that recent
techniques [1]–[3] pay attention to publishing noisy column
frequencies only, instead of the whole database.We introduce
them in the following.

B. PUBLISHING NOISY COLUMN FREQUENCIES [1]–[3]
Many existing works focus on count publication, which is
the key component of publishing top-k frequent columns.
To decrease the sensitivity of publishing noisy frequencies
of columns, FPA [3] adds noises into Fourier coefficients
and then noisy frequencies of columns can be derived.
Furthermore, note that the mean for some column frequen-
cies has a lower sensitivity than the original frequency
values. GS [2] thereby splits columns into several groups
and then publishes the noisy mean of every group to esti-
mate the frequency of each column in the corresponding
group. On the other hand, since the sensitivity of publish-
ing frequencies is the dimensionality of the database which
introduces large scale of noise, to lower it, DPsense [1]
limits the contribution of each record . Because DPsense is
closely related with our work and has a superiority to GS,
as validated in [1], we will give more details about it in
Section 3.3.

C. PUBLISHING FREQUENT COLUMNS
PATTERNS [16], [17], [19], [23]
There are a lot of works [16], [17], [19], [23] focusing on
the top-k frequent itemsets (column patterns) mining. Since
our problem top-k frequent columns mining is just one funda-
mental step of frequent itemsets mining, we just pay attention
to the techniques in existing works [16], [17], [19], [23]
designed to optimize this fundamental step. Zeng et al. [19]
firstly publish the noisy frequencies of all columns and then
select frequent columns based on the noisy frequencies. But
the noises usually make the columns with frequencies close
to the frequency of the kth frequent column fluctuate, which
generates inaccurate results. We are also aware that some
works [16], [17] employ exponential mechanism to choose k
columns as the final top-k frequent results under differential
privacy. Specifically, exponential mechanism is invoked k
times to sample frequent columns from all columns owned
by the database. However, in exponential mechanism, the fre-
quent columns are returned with the probability inversely
proportional to k . As k can be large in many cases, the
probability of choosing the true frequent column at each
time decreases, which leads to inaccurate results. Besides,
Wang et al. [24] propose sequential exponential mechanism
to effectively mine frequent itemsets. But the mechanism
cannot work well when doing frequent items mining. Note
that Lee et al. [23] design the a variant of sparse vec-
tor technique to choose an arbitrary number of frequent
columns with constant privacy consumption. However, some
works [25], [26] point the variant violates ε-differential pri-
vacy, without known fix.

III. PRELIMINARY
A. LAPLACE MECHANISM AND
EXPONENTIAL MECHANISM
To guarantee ε-DP, laplace mechanism and exponential
mechanism are twomost widely usedmechanisms. And both
of the two mechanisms depend on the sensitivity, which is
defined in the following.
Definition 3 (Sensitivity [20]): Given one algorithm A,

the sensitivity is defined as

1 = max
D1,D2

||A(D1)−A(D2)||1,

where D1 and D2 are two neighboring databases, ||A(D1)−
A(D2)||1 is the L1 distance between A(D1) and A(D2).
Specifically, laplacemechanism [27] is adopted for the sce-

nario that the output ofA is numeric. To satisfy ε-differential
privacy, it adds noises to the output of A directly. And the
noise is sampled from the Laplace distribution with mean
0 and scale 1

ε
, where 1 is the sensitivity of the algorithm A.

On the other hand, if the output of A is categorical, expo-
nential mechanism [14] is utilized. Given the output domain
� ofA, the quality function q : D×�→ R needs to be given
by users. Specifically, for any output ω ∈ �, the value of
quality function q(D, ω) reflects how accuratelyA outputs ω
based on D. To guarantee ε-differential privacy, exponential
mechanism samples ω from � with the probability propor-
tional to e

εq(ω,D)
21 , where1 is the sensitivity of quality function.

For some complex queries, composition property [28] is
used to design differentially private algorithms.
Definition 4 (Composition Property): Given one algo-

rithm A(D) consisting of a sequence of sub-algorithms
{A1(D), ...,Ai(D), ...,An(D)}, ifAi(D) satisfies εi-DP,A(D)
satisfies (

∑
i εi)-DP.

B. SPARSE VECTOR TECHNIQUE
The sparse vector technique [18] is designed to publish c
count queries above one given threshold τ from query setQ in
ε-differential privacy. It works as follows. Firstly it calculates
a noisy version of threshold τ̂ with noise scale 1

0.25ε .
1 Then,

given one count query q ∈ Q, it compares τ̂ with one noisy
version of the query result q̂(D) which has noise scale 1

0.75ε/c .
If q̂(D) is above τ̂ , the index of this query is output. Otherwise,
no answer is given. The comparisons are halted when all
required c indexes of count queries are derived or all queries
in Q have been checked. Dwork et al. [18] have proved
this process satisfies ε-DP. The advantage of this technique
is that the privacy budget consumed is proportional to c,
i.e., the number of queries above τ̂ . In order to find top-k
frequent columns, we can derive the frequency of the kth as
the threshold τ based on the database, and invoke the sparse
vector technique.

C. EXISTING METHODS
This paper aims to publish top-k frequent columns for a high-
dimensional dataset. There are two main lines summarized

1Note that we assume the sensitivity of one count query is 1.
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from the works about frequent itemsets mining [16], [17],
[19] to solve this problem, but both of them do not work well
in our context. Since our solution builds on top of them, now
we introduce their representative algorithms, i.e., freFirst [19]
and exponential mechanism [16], [17], respectively.

1) freFirst, GETTING k FREQUENT COLUMNS BASED ON
THEIR NOISY FREQUENCIES
freFirst publishes the noisy frequencies of all columns firstly
and then selects the top-k frequent columns based on the
noisy frequencies. Since the technique for publishing noisy
frequencies in [19] does not work well as the state of the
art one [1], we use DPsense to publish noisy column fre-
quencies, instead of the method used in [19]. In the fol-
lowing, we introduce DPsense in detail. Consider that the
sensitivity for the column frequencies is the maximum sum
of the values from all columns in any record in the database,
i.e., maxi(

∑d
j=1 D(i, j)), whereD(i, j) denotes the value of the

jth column in the ith record. Thus, to improve the accuracy
of published noisy frequencies, freFirst limits the maximum
sum as θ by normalizing D(i, j) as D(i, j) θ∑d

j=1 D(i,j)
. In this

paper, θ is called as truncating length. Specifically, DPsense
firstly computes a truncating length θ in ε2-differential pri-
vacy by taking both of the error incurred by normalizing
and the Laplace noise error into consider. Following that,
a truncated database Dθ is derived by:

Dθ (i, j) =


D(i, j), if

d∑
j=1

D(i, j) ≤ θ,

D(i, j)
θ∑d

j=1 D(i, j)
, otherwise.

Following that, based on the truncated records in Dθ ,
DPsense publishes the noisy frequencies with Lap( θ

ε1
) of all

columns in ε1-differential privacy. Based on the composition
property of DP, DPsense satisfies (ε1 + ε2)-differential pri-
vacy. Finally, top-k frequent columns are published based
on the noisy frequencies. However, the misjudgments for
‘‘near-k-fluctuation-column’’s phenomenonmakes published
results inaccurate.

2) EXPONENTIAL MECHANISM (EM), CHOOSING k
FREQUENT COLUMNS DIRECTLY
The EM can be used k times to sample k frequent columns.
To guarantee ε-differential privacy, column i is sampled with
probability proportional to e

εf (D,i)
k , where f (D, i) denotes the

frequency of the column i on databaseD. Obviously, the prob-
ability of the frequent column sampled is inversely propor-
tional to k . A larger k reduces the probability of a frequent
column being sampled.

IV. TWO PHASE SELECTION METHOD
This section firstly presents a two phase selection method
(TPS) for publishing top-k frequent columns. After that,
we analyze its privacy guarantee, and discuss the setting of
some parameters used in TPS.

TPS includes two phases. Firstly, it uses a part of privacy
budget to publish column frequencies and sorts the columns
in descending order of noisy frequencies. Following that,
some columns with frequency ranks far from k are cho-
sen as frequent columns with high probability. The remain-
ing results are chosen from the columns with frequency
ranks around k in the second phase. As the state-of-the-art
techniques, DPsense and EM are used in the two phases
respectively. For better understanding, based on the noisy fre-
quencies published by DPsense in the first phase, we define
safe zone and unsafe zone in Definition IV. The definitions
depend on two variables τ̂ and δ, which are introduced in the
following. By sorting the columns in the descending order of
noisy frequencies, we can get the noisy frequency τ̂ of the kth
frequent column. And δ is one parameter which limits the size
of unsafe zone and is discussed at the end of this section.
Definition 5 (Unsafe Zone, Safe Zone, Frequent Safe Zone,

Unfrequent Safe Zone): Unsafe zone is the set of columns
with noisy frequency below τ̂ + δ but above τ̂ − δ, while safe
zone contains other columns not in unsafe zone. The latter is
further divided into frequent safe zone consisting of columns
with noisy frequency above τ̂ + δ, and unfrequent safe zone
in which every column’s frequency is below τ̂ − δ.
Since the frequencies of columns in frequent safe zone are

much bigger than τ̂ , these columns are inferred as frequent.
On the contrary, columns in unfrequent safe zone are regarded
as infrequent. On the other hand, for the columns in unsafe
zone, since the frequencies of them are close to τ̂ , we cannot
easily judge them whether frequent or not by their sorting
ranks. Instead, we use a part of privacy budget to carefully
choose the frequent columns from unsafe zone based on
exponential mechanism.

Algorithm 1 shows the framework of TPS. Firstly, the pri-
vacy budget is split into three parts: ε1, ε2 and ε3 (Line 1).
DPsense uses privacy budget ε1 to compute the truncating
length l and then publishes the noisy frequencies of columns
Ĉ with noise scale l

ε2
in ε2-DP (Line 2). Here, Ĉ is a vector,

in which the jth element stores the jth column and its noisy
frequency. And then we sort the columns based on the pub-
lished noisy frequencies in descending order and store the
sorted results in another vector Ĉs, where the jth element
stores the jth frequent column ei and its noisy frequency
ec (Line 3). And τ̂ denotes the noisy frequency of the kth
element in Ĉs (Line 4). Afterwards we successively visit
elements in Ĉs (Lines 6-12). If the noisy frequency ec is
bigger than τ̂ +δ, i.e., ei is in frequent safe zone, ei is directly
added intoR1 as a frequent column (Lines 7-8). If ec is smaller
than τ̂ − δ, i.e., ei is in unfrequent safe zone, ei is skipped.
Besides, since the columns in Ĉs are sorted in descending
order, the columns located behind ei in Ĉs are all unfrequent
and the traversal is terminated (Lines 9-10). If ec ∈ [̂τ −
δ, τ̂ + δ], ei is in unsafe zone and appended into B (Lines
11-12). Till now, a part of frequent columns in R1 have been
derived. Next, GetExtraColumns focuses on how to choose
the remaining k − |R1| frequent columns from the columns
located in unsafe zone B (Line 13). In the GetExtraColumns
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Algorithm 1 Two Phase Selection Method
Input : Database D, privacy budget ε, k
Output: top-k frequent columns R

1 Split ε into three parts, ε1, ε2 and ε3;
2 Ĉ , l← DPsense(D, ε1, ε2);
3 Get Ĉs by sorting columns in Ĉ in descending order of
noisy frequencies;

4 τ̂ ← the noisy frequency of the kth element in Ĉs;
5 Set candidate frequent column list B ={}, R1 = {};
6 for each element [ei, ec] in Ĉs do
7 if ec ∈ [̂τ + δ,+∞] then
8 R1 = R1 ∪ ei;

9 if ec ∈ [−∞, τ̂ − δ] then
10 Break;

11 if ec ∈ [̂τ − δ, τ̂ + δ] then
12 append ei to B;

13 R2← GetExtraColumns(B,D, ε3, k − |R1|);
14 R← R1 ∪ R2;
15 Return R;

algorithm, exponential mechanism is invoked k−|R1| times to
choose k−|R1| frequent columns. And for any column ei inB,

the sampled probability of ei is proportional to e
εf (ei,D)
k−|R1| , where

f (ei,D) is the frequency of column ei. Since the algorithm of
GetExtraColumns is clear, we omit the description.

Taking the scenario shown in Figure 2 into consider,
Algorithm 1 works as follows: Firstly DPsense publishes the
noisy frequencies of all columns in the first phase, where
the noisy frequencies are labeled as triangles. After that,
by comparing the noisy frequencies with τ̂−δ and τ̂+δ, a part
of frequent columns {A,B} and the columns in the unsafe
zone {E,G,F,C,H ,D} are achieved. And then exponential
mechanism is invoked three times to choose the other three
frequent columns from {E,G,F,C,H ,D}.

In the following, Theorem 1 gives the privacy analysis of
Two-Phase Selection.
Theorem 1: TPS satisfies ε-differential privacy.
Proof: TPS includes three parts. For the first part,

DPsense satisfies (ε1 + ε2)-differential privacy to publish
the truncating length l and noisy frequencies of columns
in Line 2, which has been validated by Day et al. [1]. For
the second part, it does not compromise any privacy to choose
the columns in frequent safe zone and the ones in unsafe
zone in Lines 3-12, since these operations are based on noisy
frequencies, independent of the database. For the third part,
GetExtraColumns applies exponential mechanism k − |R1|
times to sample k−|R1| columns without replacement. Since
the sensitivity of one column frequency is 1, intuitively the
process satisfies ε3-differential privacy. Based on Defini-
tion 4, TPS satisfies (ε1 + ε2 + ε3)-differential privacy.
Choice of δ: Considering the scale of laplace noise in τ̂ is

l
ε2
, we use τ̂− l

ε2
or τ̂+ l

ε2
to estimate the true frequency τ of

the column in the kth index of Ĉs. Let c (̂c) be the true (noisy)
frequency of one column. In the same way, c is estimated
using ĉ− l

ε2
or ĉ+ l

ε2
. If the smaller value of c is larger than the

bigger value of τ , i.e., ĉ− l
ε2
> τ̂+ l

ε2
(̂c > τ̂+ 2l

ε2
), the column

is frequent with a high probability. If the bigger value of c is
smaller than the smaller value of τ , i.e., ĉ + l

ε2
< τ̂ − l

ε2

(̂c < τ̂ − 2l
ε2
), this column is unfrequent in high probability.

In other cases, we think the columns need to be judged further.
So we set the parameter δ to 2l

ε2
.

Although TPS can choose the true frequent columns with
high probability in the first phase, it has to split ε3 into
k1 = k−|R1| parts and uses every part to choose one frequent
column from the unsafe zone in the second phase. If there are
many frequent columns left in unsafe zone, i.e., k1 is big,
the accuracy of the k1 frequent columns chosen is still low.
In the next section, we introduce privacy-free-mechanism to
optimize the method in the second phase.

V. TWO PHASE SELECTION WITH
PRIVACY-FREE-MECHANISM
This section presents our solution for choosing the remaining
frequent columns from the unsafe zone. Firstly, we show
a phenomenon existing in the non-private scenario, which
motivates us to design the privacy-free-mechanism. After
that, we elaborate our algorithm and analyze its privacy
guarantee.

Recall that the first phase of TPS generates B which stores
the sorted columns in descending order of noisy frequencies
in unsafe zone. By analyzing the true frequencies of columns
in unsafe zone, we find that frequent/unfrequent columns are
prone to be continuous. Let ρ denote the threshold, i.e., the
frequency of the k1th frequent column in B. Now, if the fre-
quency of one column is bigger (smaller) than ρ, the column
is regarded as frequent (unfrequent) and labeled as ‘‘+1’’
(‘‘−1’’). Based on the distribution of frequent/unfrequent
columns, unsafe zone is split into fine-grained blocks. Specif-
ically, we construct two kinds of blocks.

• The first column in one block is frequent and labeled as
‘‘1’’, but the last one is unfrequent and labeled as ‘‘−1’’.
Other columns between the first one and the last one are
all frequent and labeled as ‘‘1’’. Obviously, there exist at
least one frequent column in this block.

• The first column in one block is unfrequent and labeled
as ‘‘−1’’, but the last one is frequent and labeled as ‘‘1’’.
Other columns between the first one and the last one are
all unfrequent and labeled as ‘‘−1’’. This kind of blocks
contain one frequent column.

For example, in Figure 3, there exist block {C, D, E} with a
label sequence (+1,+1,−1) and block {F, G, H} with a label
sequence (−1,−1,+1). Obviously, every block contains one
frequent column at least and hence the number of blocks is
smaller than that of frequent columns.

The above phenomenon motivates us to design one block-
centric mechanism ‘‘privacy-free-mechanism’’ (PFM) to
choose frequent columns. PFM aims to pay privacy budget
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FIGURE 3. An example for privacy-free-mechanism.

only for the label judgement of the last column in one block
by comparing ρ with the corresponding frequency, instead
of the one of every column in the block. In this way, a lot
of privacy budget is saved. Because when traversing the
first kind of block containing multiple frequent columns,
only the judgement for the last column costs privacy while
others are privacy-free. Thus, the privacy consumption is
proportional to the number of blocks, instead of frequent
columns as exponential mechanism or original SVT. PFM is
executed succinctly. In particular, PFM adds laplace noises
with scale proportional to the number of blocks into the
column frequencies and the threshold ρ, and compares the
noisy frequencies with noisy versions of ρ to judge whether
columns are frequent (‘‘+1’’) or unfrequent (‘‘−1’’). Note
that the noisy column frequencies in one block need to be
compared with the same version of noisy ρ̂ but columns in
different blocks need to be compared with different versions
of noisy ρ̂s. The noise in ρ̂ can prevent the privacy from being
posed by the judgement of the first x−1 columns in one block,
where x denotes the length of this block. However, there
are two problems required to be discussed in detail. Firstly,
before finishing judgements of all columns in unsafe zone,
the number of blocks is not available and hence the scale of
noise added into column frequencies and threshold ρ cannot
be determined beforehand. Thus, we allocate privacy budget
for every column dynamically. Specifically, when making a
judgment, the number of remaining blocks is estimated by its
upper bound, i.e., the number of remaining frequent columns.
And the remaining privacy budget is allocated evenly for
these blocks. Secondly, since different blocks use different
ρ̂s, we have to update ρ̂ when a new block is found, i.e., the
label of the current column is different from that of the 1st
column in this block.

Specifically, Algorithm 2 describes the block-centric
method GetExtraColumns_PFM in detail. We firstly use a
small part of privacy budget εe to generate one noisy version
ρ̂ of ρ (Line 3). ε3 is used to store the remaining privacy
budget. And ‘‘flag’’ records the label of beginning column in
the current block (Line 4). If flag is equal to ‘‘+1’’ (‘‘−1’’),
that means the block needs to end up with one column with
label ‘‘−1’’ (‘‘+1’’). If flag is equal to ‘‘0’’, that means a

Algorithm 2 GetExtraColumns_PFM(B,D, ε3, k1)
Input : the columns in unsafe zone B, privacy budget

ε3,
the number of frequent columns to be chosen

k1
Output: extra frequent columns R1

1 ρ ← the frequency of the k1th frequent column in B;
2 εe =

ε3
4k1

;
3 ρ̂ = ρ + Lap( 1

εe
), ε3 = ε3 − εe;

4 flag = 0, R1={};
5 while (|R1| < k1 & |B| > 0 & ε3 > 0) do
6 ei← the first element in B, delete the first element

in B;
7 εc =

ε3
k1−|R1|

;
8 f̂ ← f (ei,D) + Lap( 1

εc
);

9 if (̂f > ρ̂) then
10 R1← R1 ∪ ei;

11 if (̂f > ρ̂ & flag = 0) then
12 flag = +1;

13 if (̂f < ρ̂ & flag = 0) then
14 flag = -1;

15 if (̂f > ρ̂ & flag = −1) || (̂f < ρ̂ & flag = 1) then
16 ε3← ε3 − εc, εe←

ε3
4(k1−|R1|)

;
17 ρ̂ ← ρ + Lap( 1

εe
), ε3← ε3 − εe;

18 flag = 0;

19 Return R1;

new block is going to be traversed and the flag label need
to be re-initialized. R1 stores the frequent columns chosen
by GetExtraColumns_PFM (Line 4). Next, we judge whether
the columns in B are frequent or not in turn (Lines 5-18). Let
εc denote the privacy budget paid for the frequency of the
current column (Line 7). Note that (k1 − |R1|) indicates the
number of the remaining frequent columns not foundwhich is
equal to the maximal number of the remaining blocks. So the
remaining privacy budget ε3 is evenly split into (k1 − |R1|)
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parts and every part is used to choose one frequent column.
Thus εc is set as

ε3
k1−|R1|

. Following that, we get the noisy
frequency f̂ with noise scale 1

εc
for the frequency of column

ei (Line 8). If f̂ > ρ̂, that means ei is frequent and added into
R1 (Lines 9-10). When f̂ > ρ̂ (̂f < ρ̂) and flag is equal to 0,
ei is the first column of one new block and the starting flag
of this block is set to ‘‘+1’’ (‘‘−1’’) (Lines 11-14). When f̂ is
bigger (smaller) than ρ̂ and flag is equal to ‘‘+1’’ (‘‘−1’’), ei
reaches the end of the current block. Then privacy budget εc
has to been consumed and the value of ε3 is updated (Line 16).
Afterwards, we use εe =

ε3
4(k1−|R1|)

to get a new noisy version
of ρ, which is applied for the next block (Line 17). At the
same time, flag is initialized to 0 (Line 18). The process is
terminated when k1 frequent columns have been found or the
columns in B are all traversed.
Figure 3 gives a running example of Algorithm 2. At the

beginning, we get a noisy version of ρ using privacy budget
ε1e =

ε3
4k1

and the remaining privacy budget is thereby ε3−ε1e .

Since k1 frequent columns are required, ε11c =
ε3−ε

1
e

k1
is

allocated for column C . Then the noisy frequency of C is
bigger than ρ̂ and C is labeled as ‘‘+1’’. Furthermore, since
C is the first column in the current block, flag is also set
to ‘‘+1’’. Besides, we update the privacy budget for the
frequency of next column as ε12c =

ε3−ε
1
e

k1−1
, considering one

frequent columnC has been found. In the sameway, the noisy
frequency of D with noise scale 1

ε12c
is bigger than ρ̂ and

labeled as ‘‘+1’’. The privacy budget is updated again as
ε13c =

ε3−ε
1
e

k1−2
. Following that, the noisy frequency of E with

noise scale ε13c is smaller than ρ̂ and labeled as ‘‘−1’’, which
is different from the label of starting column C in this block.
Accordingly, this block is terminated and the current privacy
budget ε13c is consumed. Then there is ε3 − ε1e − ε

13
c privacy

budget left. Next, GetExtraColumns_PFM will start a new
block and use the remaining privacy budget to choose k1− 2
frequent columns.

Note that the privacy-free-mechanism is not sensitive to
the order of columns in the original dataset, because a built-
in sorting mechanism in the first phase of TPS can sort the
columns with the corresponding noisy frequencies.

In the following, we discuss the privacy guarantee of
GetExtraColumns_PFM. Note that the privacy budget ε3 in
GetExtraColumns_PFM is consumed in two cases: the pri-
vacy budget is paid for the threshold ρ (Lines 3 and 17); the
budget is paid for the frequency of the end column in each
block (Line 16).
Theorem 2: GetExtraColumns_PFM shown in Algo-

rithm 2 satisfies ε3-differential privacy.
Please find the proof in Appendix.

VI. EXPERIMENTAL EVALUATION
This section evaluates the performance of the methods
which publish the top-k frequent columns. Specifically,
TPS+EM denotes our two-phase selection framework with
exponential mechanism in the second phase. By contrast,

TABLE 1. Description of real datasets.

TPS+PFM indicates TPS with the newly designed privacy-
free-mechanism. Note that we set the privacy budget param-
eters involved in TPS (Algorithm 1) as ε1 = 0.1ε, ε2 = 0.6ε
and ε3 = 0.3ε. We compare our proposals with the two
most effective methods, freFirst [19] and EM [16], which
are used in frequent items mining as the fundamental step of
frequent itemsets mining [16], [17], [19], [23]. Note that fre-
First represents the algorithms which publish noisy column
frequencies firstly and then select top-k columns as results.
Since DPsense is the state of the art technique for publishing
column frequencies, we use DPsense to replace the method
used in [19] for noisy column frequencies publication. Both
freFirst and EM are one-phase-selection methods and have
been described in Section III.C. All tests are run on real
datasets and Table 1 shows some properties of these datasets,
including the size of datasets |D|, the number of columns
|I | and the maximal/average number of ‘‘1’’s in one record
max |t|/avg|t|.
We use Fscore [17], [19] to measure the performance

of these methods. Let R and R̂ denote the true result and
noisy one respectively. Fscore is defined as Fscore = 2 ×
precision∗recall
precision+recall , where precision =

|R∪R̂|
|̂R|

and recall = |R∪R̂|
|R| .

Note that a higher Fscore means more accurate results are
achieved.

The programs of all the methods are implemented by C++
and all the experiments are run on a PC with Intel i7 CPU,
8GB RAM and Windows 7 OS. And each experiment is
repeated 10 times, with average results reported only.

Figures 4-9 show the Fscores of TPS+EM, TPS+PFM,
freFirst and EM by varying εs on six datasets with different
values of k ∈ {100, 150, 200}. We summarize our observa-
tions as follows.

A. TPS vs. EM
Our TPS+EM outperforms EM by a large margin up to
0.7, yielding to nearly 7 times improvement. It is because
EM uses exponential mechanism to sample all k frequent
columns from the whole column set I . Generally, the size
of I is big. For example, |I | is up to 16470 in ‘‘retail’’. The
large output domain makes the sampled probability of true
frequent column decrease. On the contrary, in the second
phase of TPS+EM, benefiting from pruning operations in the
first phase, it samples only a part of frequent columns from
unsafe zone. Considering the sampled probability of the true
frequent column is inversely proportional to the number of
frequent columns, TPS+EM performs better than EM.
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FIGURE 4. Fscore on the BMS-POS dataset.

FIGURE 5. Fscore on the retail dataset.

FIGURE 6. Fscore on the pumsb dataset.

B. TPS VS. freFirst
In most cases, TPS+EM has a superiority to freFirst. For
example, when k = 200 and ε = 0.05 in Figure 6, Fscore of
TPS+EM is roughly 0.2 higher than that of freFirst. freFirst
is one phase selection method by choosing top-k frequent
columns based on noisy column frequencies. Generally, due
to the noises in these frequencies, the ranks of columns near
the kth index fluctuate heavily, which makes the chosen
columns deviate from the true results. However, TPS+EM
uses a part of privacy budget to re-choose the frequent
columns from the columns whose ranks are near to k . The
re-choosing can improve the accuracy of published results.
And it is also observed that in only a few cases including

k = 200 in tafeng, k = 200 in BM1, k = 200 in BM2 and
k = 150 in BM2, freFirst slightly beats TPS+EM. That is
because there are many frequent columns in unsafe zone and
TPS+EM has to invoke exponential mechanism many times
to sample these frequent columns. As a result of that, the pri-
vacy budget has to be split into many parts and every part is
used to sample one column, which reduces the accuracy of the
sampled result. For the above case, TPS+PFM is proposed to
improve the accuracy of published results.

C. TPS+PFM VS. TPS+EM
TPS+PFM beats other methods all the time. TPS+PFM
beats freFirst by up to 0.3 and 0.2 for TPS+EM, yielding to
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FIGURE 7. Fscore on the tafeng dataset.

FIGURE 8. Fscore on the BM1 dataset.

FIGURE 9. Fscore on the BM2 dataset.

nearly 50% improvement and 30% improvement respectively.
We have already given the reason for the advantage of two
phase selection method before. Then we discuss the advan-
tage of TPS+PFM compared with TPS+EM. In the second
phase of TPS+PFM, it applies privacy-free-mechanism to
choose frequent columns. The privacy budget is split into
some parts. The number of these parts is equal to the num-
ber of blocks generated during the choosing process and is
smaller than the number of frequent columns to be sampled.
TPS+PFM thereby can utilize more privacy budget to choose
one frequent column. Then TPS+PFM can achieve a better
performance.

VII. CONCLUSION
In this paper, we consider the problem of publishing top-
k frequent columns for the high dimensional dataset in
ε-differential privacy. We propose a novel two-phase

selection framework denoted by TPS to choose frequent
columns in the safe zone and unsafe zone respectively,
since the abilities of columns to tolerate noises vary with
their frequency ranks. Besides, we also design the differ-
entially private block-centric column-choosing mechanism,
PFM, to derive the frequent columns in the unsafe zone with
low privacy consumption. Thorough experiments with real
datasets are conducted to demonstrate the superiority of our
techniques against the benchmarks.

THE PROOF OF THEOREM 2
Proof: Let D1 and D2 be neighboring databases, where

D1 = D2∪{t}. And O denotes the label sequence of columns
in B output by GetExtraColumns_PFM, where the label
sequence consists of ‘‘+1’’s and ‘‘−1’’s. Besides, Oi denotes
the output label sequence based on the ith block bi in B. B+

(B−) is used to denote the set of the blocks which end up with
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‘‘+1’’ (‘‘−1’’). Let p[O|B,D1] (p[Oi|bi,D1]) be the proba-
bility that GetExtraColumns_PFM returns label sequence O
(Oi) corresponding to all the columns in B (bi) given database
D1. Then, the privacy cost of GetExtraColumns_PFM is:

max
D1,D2

∣∣∣∣log(p[O|B,D1]
p[O|B,D2]

)∣∣∣∣
= max

D1,D2

∣∣∣∣∣∣∣log


∏
bi∈B+

p[Oi|bi,D1] ·
∏

bi∈B−
p[Oi|bi,D1]∏

bi∈B+
p[Oi|bi,D2] ·

∏
bi∈B−

p[Oi|bi,D2]


∣∣∣∣∣∣∣
(1)

To prove the theorem, it suffices to show that the right hand
side (r.h.s.) of Equation 1 is no more than exp(ε3).

Let ρ̂1i (ρ̂
2
i ) be the noisy version of ρ for the block bi onD1

(D2). εie denotes the privacy budget allocated to ρ in block
bi. f 1ij (f 2ij ) and f̂

1
ij (̂f 2ij ) are the frequency of the jth column

in block bi and its noisy version based D1 (D2). And ε
ij
c is

the privacy budget allocated to f 1ij and f 2ij . To show that the
r.h.s of Equation 1 is no more than exp(ε3), we firstly validate
Formula 2 is satisfied for bi ∈ B−.

exp(−εie − ε
i|bi|
c ) ≤

p[Oi|bi,D1]
p[Oi|bi,D2]

≤ exp(εie + ε
i|bi|
c ). (2)

In what follows, we focus on the case when |D1| = |D2|+1
and bi ∈ B−; the case when |D2| = |D1| + 1 can be proved
in a similar manner.

First, for bi ∈ B−, p[Oi|bi,D1] is the probability that
GetExtraColumn_PFM outputs (|bi| − 1) ‘‘+1’’s associated
with the first (|bi| − 1) columns in bi and one ‘‘−1’’ corre-
sponding to the last column in bi. And it can be written as the
following formula:

p[Oi|bi,D1]

=

∫
+∞

−∞

Pr[ρ̂1i = x]


|bi|−1∏

j=1

∫
+∞

x
Pr[̂f 1ij = y]dy


×

∫ x

−∞

Pr[̂f 1i|bi| = y]dy
}
dx

Considering the case when |D1| = |D2| + 1, where f 1ij =
f 2ij or f

1
ij = f 2ij + 1, we have

Pr[ρ̂1i = x]

Pr[ρ̂2i = x − 1]
≤ eε

i
e ,

∫ x
−∞

Pr[̂f 1i|bi| = y]dy∫ x−1
−∞

Pr[̂f 2i|bi| = y]dy
≤ eε

i|bi|
c ,∫

+∞

x
Pr[̂f 2ij =y]dy ≤

∫
+∞

x
Pr[̂f 1ij =y]dy≤

∫
+∞

x−1
Pr[̂f 2ij =y]dy.

Then, the upperbound of p[Oi|bi,D1] is shown in
Formula 3:

p[Oi|bi,D1]

≤

∫
+∞

−∞

Pr[ρ̂1i = x]


|bi|−1∏

j=1

∫
+∞

x−1
Pr[̂f 2ij = y]dy


×

∫ x

−∞

Pr[̂f 1i|bi| = y]dy
}
dx

≤

∫
+∞

−∞

eε
i
e Pr[ρ̂2i = x − 1]

×


|bi|−1∏

j=1

∫
+∞

x−1
Pr[̂f 2ij =y]dy

 eεi|bi|c

∫ x−1

−∞

Pr[̂f 2i|bi|=y]dy

 dx

= eε
i
e+ε

i|bi|
c p[Oi|bi,D2] (3)

Next, we infer the upperbound of p[Oi|bi,D2] in Formula
4 :
p[Oi|bi,D2]

=

∫
+∞

−∞

Pr[ρ̂2i = x]


|bi|−1∏

j=1

∫
+∞

x
Pr[̂f 2ij = y]dy


×

∫ x

−∞

Pr[̂f 2i|bi| = y]dy
}
dx

≤

∫
+∞

−∞

Pr[ρ̂2i = x]


|bi|−1∏

j=1

∫
+∞

x
Pr[̂f 1ij = y]dy


×

∫ x

−∞

Pr[̂f 2i|bi| = y]dy
}
dx

≤

∫
+∞

−∞

eε
i
e Pr[ρ̂1i = x]


|bi|−1∏

j=1

∫
+∞

x−1
Pr[̂f 1ij = y]dy

 eεi|bi|c

×

∫ x

−∞

Pr[̂f 1i|bi| = y]dy
}
dx

= eε
i
e+ε

i|bi|
c p[Oi|bi,D1] (4)

So Formula 2 is proved by combining Formula 3 with
Formula 4 when bi ∈ B−. In addition, for the case bi ∈ B+,
we can prove Formula 2 in a similar way. Based on Eqn. 1,
we have:

r.h.s. of Eqn. 1

= max
D1,D2

∣∣∣∣∣∣log
 ∏
bi∈B+

p[Oi|bi,D1]
p[Oi|bi,D2]

·

∏
bi∈B−

p[Oi|bi,D1]
p[Oi|bi,D2]

∣∣∣∣∣∣
= log

 ∏
bi∈B+

exp(εic + ε
i|bi|
e ) ·

∏
bi∈B−

exp(εic + ε
i|bi|
e )


=

∑
bi∈B+∪B−

εie +
∑

bi∈B+∪B−
εi|bi|c

≤ exp(ε3)

Thus, the theorem is proved.
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