
Future Generation Computer Systems 101 (2019) 804–818

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

TSH: Easy-to-be distributed partitioning for large-scale graphs
Ning Wang a, Zhigang Wang a,∗, Yu Gu b, Yubin Bao b, Ge Yu b

a College of Information Science and Engineering, Ocean University of China, China
b School of Computer Science and Engineering, Northeastern University, China

h i g h l i g h t s

• Re-formulate graph partitioning for efficient combination in Pregel-like systems.
• Discover graph locality in many real-world graphs.
• Design a distributed streaming graph partitioning algorithm based on locality.

a r t i c l e i n f o

Article history:
Received 1 December 2017
Received in revised form 20 August 2018
Accepted 27 June 2019
Available online 22 July 2019

Keywords:
Distributed iterative computation
Large-scale graph
Streaming partitioning
Locality

a b s t r a c t

The big graph era is coming with strong and ever-growing demands on parallel iterative analysis. But,
before that, balanced graph partitioning is a fundamental problem and is NP-complete. Till now, there
have been several streaming heuristic solutions with a single full scan over the input graph. However,
some of them cannot be easily parallelized to further accelerate partitioning for large-scale graphs
due to complicated heuristics; while others can be run in parallel but incur expensive communication
costs during iterative computation.

This paper presents Target-vertex Sensitive Hash (TSH), an easy-to-be distributed partitioning
method. We first analyze the locality property naturally provided by the original input graph, which
has not yet been considered by existing work. We then exploit such locality to simplify the heuristic
rule. The simplified rule is implemented by a two-step framework where target vertices of edges are
first logically pre-divided without accessing any graph data and then, based on the distribution of
target vertices, streaming partitioning is physically performed in parallel. TSH provides the capability
of quickly dividing large-scale graphs because of parallelization, as well as optimizes communication
overheads due to the utilization of locality. Using a broad spectrum of real-world graphs, we conduct
extensive performance studies to confirm the effectiveness of TSH over up-to-date competitors.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Graphs have been studied in general applications in the cyber
world, like intelligent transportation systems, social networks,
bioinformatics, Internet, and scientific computation [1]. Many
graph analysis algorithms are naturally iterative so as to refine
the final solution step by step, such as PageRank, Shortest Path,
and Connected Components. However, the graph data volume
is increasingly growing, that poses great challenges to efficient
iterative computation. For example, Google has indexed hundreds
of billions of webpages.1 Until November 2017, there are over
2.07 billion monthly active users on Facebook.2 In order to handle

∗ Corresponding author.
E-mail addresses: wangning_neu@163.com (N. Wang),

wangzhiganglab@gmail.com (Z. Wang), guyu@mail.neu.edu.cn (Y. Gu),
baoyubin@mail.neu.edu.cn (Y. Bao), yuge@mail.neu.edu.cn (G. Yu).
1 https://www.google.com/search/howsearchworks/crawling-indexing/.
2 https://zephoria.com/top-15-valuable-facebook-statistics/.

such complex analysis over large graphs, distributed systems
have been developed [2–10], all of which expose simple yet
expressive APIs for easily programming various algorithms. Users
can submit their own graph analysis jobs concurrently. Any job
is typically processed by several workers in parallel which run on
physical machines in a cloud computing cluster. That maximally
unleashes the power of the given cluster.

Graph partitioning is a key component in all of the existing
distributed systems. Distributed systems typically partition an
input graph onto a group of workers as sub-graphs and then
perform iterative update over them. More specifically, at each
iteration, a graph algorithm exchanges intermediate results (also
called messages) along edges. Then the number of cut edges
across sub-graphs can reflect the network communication over-
head to some extent and hence the computation efficiency. Also,
the computation workload of each worker is supposed to be
balanced. Otherwise, the slow, straggling worker can slow down
the overall performance. Thus, as studied before, a high-quality
partitioning method should decrease the number of cut edges,

https://doi.org/10.1016/j.future.2019.06.033
0167-739X/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2019.06.033
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2019.06.033&domain=pdf
mailto:wangning_neu@163.com
mailto:wangzhiganglab@gmail.com
mailto:guyu@mail.neu.edu.cn
mailto:baoyubin@mail.neu.edu.cn
mailto:yuge@mail.neu.edu.cn
https://www.google.com/search/howsearchworks/crawling-indexing/
https://zephoria.com/top-15-valuable-facebook-statistics/
https://doi.org/10.1016/j.future.2019.06.033

N. Wang, Z. Wang, Y. Gu et al. / Future Generation Computer Systems 101 (2019) 804–818 805

as well as balance the workload among subgraphs. However,
besides the traditional quality factors mentioned above, now
we also need to focus on the partitioning efficiency. Based on
our experience, the available cloud compute resources usually
dynamically change with the submission of graph jobs, and the
addition and removal of physical machines. Most of systems,
like Pregel [2] developed by Google, quantify available resources
by worker slots. They typically provide a setWorkerNum API for
users to flexibly set the number of workers when submitting
their own jobs. The number of workers might not be a constant
when running analysis jobs over the same graph but at different
times. Therefore, graph partitioning is required by every job. That
is, different jobs cannot share partitioning results to amortize
partitioning costs. To summarize, balanced workload, optimized
communication costs, and high partitioning efficiency, can im-
prove the overall performance of iterative graph analysis, all of
which should be considered when partitioning graphs.

However, graph partitioning is NP-complete [11,12]. Exist-
ing heuristic solutions basically fall into two categories: offline
represented by Metis [13] and streaming/online by LDG [14],
Fennel [15] and FG [16]. Offline partitioning can significantly
decrease the number of cut edges, and then optimize the com-
munication overhead. It thereby attracts a lot of attention both
in industry and in science. However, it requires to frequently
traverse vertices, yielding expensive costs especially when pro-
cessing large-scale graphs. Previous experiments have shown that
the partitioning runtime may exceed the iterative computation
runtime [15]. Hence, a cost-effective alternative is to acceler-
ate the partitioning procedure by compromising the partitioning
quality, i.e. streaming partitioning. It is completed by performing
a single full pass over vertices and edges. This can be done along
loading input graph. Hence, we also call it as online partitioning
through this paper. However, streaming partitioning is usually
run on a single machine so as to update heuristic information in a
centralized fashion. That limits the scalability. Note that Hash as
another streaming solution can be run in parallel but the quality
is particularly poor in terms of communication optimization.

Hence, a naturally desirable goal for graph partitioning is
to pursue a streaming mechanism that offers high partitioning
quality and can be performed in an efficient distributed fashion.
This paper explores a path to such a target. In particular, we
re-define graph partitioning because most of Pregel-like systems
have a built-in combination function to optimize communication
overheads. That is, every worker combines messages sent to
the same target vertex into a single one before flushing them.
Communication overheads indeed are dominated by the number
of messages after performing all possible combining operations.
In another word, they depend on how many target vertices edges
on each worker link to, instead of cut edges across workers.
Existing definitions ignore the combining effect. The re-defined
partitioning shifts the optimization core from cut edges to target
vertices. Previous efforts have shown that the former cannot be
optimized without high overheads. However, it is feasible for the
latter. We discover that real-world graphs have some locality,
that is, many outgoing edges from different source vertices usu-
ally link to common target vertices. By leveraging this locality,
we design a Target-vertex Sensitive Hash (TSH) partitioning algo-
rithm. Specifically, we assume that vertices as target vertices are
pre-partitioned into disjoint subsets, each of which is associated
with one sub-graph. Pre-partitioning is performed in a simple
fashion for efficiency and the result is regarded as the heuristic
rule. Accordingly, TSH can decide the placement of each vertex
arriving in a streaming fashion to optimize the actual number of
target vertices in all sub-graphs. But more importantly, it can be
performed in parallel for efficiency since the heuristic rule has
been fixed. Our experiments show that although the heuristic

rule is not dynamically updated as traditional solutions, it still
provides comparable communication optimization effect because
of the locality property in real-world graphs.

The major contributions are summarized as below.

• We re-formulate graph partitioning for Pregel-like systems
by explicitly taking their built-in combining function into
account. The new definition emphasizes decreasing the
number of target vertices.
• We discover the graph locality and our further investigation

reveals that it exists in many real-world graphs.
• Based on the re-formulated partitioning and the locality, we

design a novel streaming partitioning algorithm TSH. It can
be efficiently performed in a distributed fashion, as well
as optimize the communication overheads across balanced
sub-graphs.
• Extensive experimental studies explore the performance

features of our proposal. We demonstrate that TSH can
offer comparable quality to the state-of-the-art centralized
streaming partitioning solution but run faster than it.

The remainder of this paper is organized as follows. Section 2
provides necessary background regarding distributed graph pro-
cessing systems and then formally gives the definition of graph
partitioning. Section 3 introduces the graph locality and uses a lot
of preliminary experimental results to show that it is widespread.
Section 4 presents the details of our new partitioning algorithm
TSH. Section 5 reports extensive evaluation results. Section 6
highlights related work. Finally, Section 7 concludes this paper.

2. Problem definition

This section first uses the Pregel system developed by Google
to demonstrate how to perform iterative graph computation in
parallel. We then re-formulate the goal of graph partitioning in
our context.

2.1. Iterative graph computation on Pregel-like systems

As shown in Fig. 1, Pregel runs on a cloud computing cluster
with multiple physical machines where one is selected as Mas-
ter to manage the whole system and others are responsible for
underlying computation. Graph processing jobs are concurrently
submitted in multi-tenant environments, each of which is divided
into K (such as 3 in Fig. 1) workers and then scheduled onto se-
lected machines for parallel computation. Note that one machine
can run several workers as a group at the same time, but in this
paper, we assume that a group consists of one worker at most to
avoid potential resource contention. Workers need to load input
graph from file systems such as HDFS [17] and then partition
data into K sub-graphs. The subsequent iterations are separated
by global barriers. Within one iteration, workers perform local
updates and communicate with each other to exchange interme-
diate results (messages). These computation workloads should be
balanced across workers. Otherwise, fast workers will wait for the
slow, straggling ones at barriers.

Note that the K values of jobs can be very different from each
other, which is decided by many factors like available resources
and urgency. Hence, jobs individually perform the partitioning
process based on their corresponding K values, even though they
take the same graph as input. The partitioning runtime is thereby
counted into the overall runtime of a job since it cannot be
amortized.

In particular, an edge is a cut edge if its endpoints are placed
onto different workers. Messages are transmitted along cut edges
in a batch fashion, in order to make full use of the network
idle time and reduce the overhead of building communication

806 N. Wang, Z. Wang, Y. Gu et al. / Future Generation Computer Systems 101 (2019) 804–818

Fig. 1. Parallel graph computation in Pregel.

connections. Pregel immediately flushes messages at the sender
side once the number of buffered messages exceeds a pre-defined
batch size (also called the sending buffer size). Before that, how-
ever, messages sent to the same target vertex can be combined
into a single one for efficiency. Clearly, the communication vol-
ume is actually dominated by the total number of such target
vertices on each worker.

2.2. K-way graph partitioning for Pregel-like systems

We model a graph as a directed graph G = (V , E) where V is
a set of vertices and E is a set of edges (pairs of vertices). |V | and
|E| denote the number of vertices and edges, respectively. Given
a directed edge (v, u) ∈ E, v is the source vertex and u is the
target vertex. We conventionally represent G in adjacency lists by
grouping edges around sources. This input format is widely used
by Pregel-like systems because many graph algorithms send the
source vertex value as a message to target vertices along outgoing
edges.

Before parallel computation, the Graph Partitioning process in
Pregel (GPP) should quickly partition G into K sub-graphs Gi =

(Vi, Ei), where Ei = {(v, u)|v ∈ Vi} and ∀ 1 ≤ i < j ≤ K , Vi∩Vj = ∅.
Let |Gi| be the workload associated with Gi. V tar

i is the set of target
vertices to which cut edges in Ei link, i.e., V tar

i = {u|(v, u) ∈
Ei ∧ u /∈ Vi}. As analyzed in Section 2.1, a partition output by
GPP should balance |Gi| and minimize the summation over |V tar

i |

with i ranging from 1 to K . Eq. (1) mathematically gives the goals
of GPP. Here, Cp stands for the partitioning runtime and ρ is
the workload balance factor with ideal value 1.0. In fact, Eq. (1)
defines the (K , ρ)-balanced graph partitioning. However, differ-
ent from traditional definition, now the optimization goal w.r.t.
network cost is to reduce

∑
i∈[1,K] |V

tar
i | rather than the number

of cut edges. Theorem 1 tells us that GPP is also NP-Complete.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min Cp

max
i∈[1,K]
{|Gi|} ≤ ρ ·

|G|
K

min
∑

i∈[1,K]

|V tar
i |

(1)

Theorem 1. For K ≥ 3, (K , 1)-GPP is NP-Complete.3

3 For K = 2, (2, 1)-partitioning is equivalent to the Minimum Bisection
problem. It is still NP-Complete with our network cost optimization by referring

Proof. Inspired by Ref. [11], we have this claim by a reduction
from 3-Partition, a proved NP-Complete problem [12]. Assume
that we have a set A of 3K elements and a polynomial bound
B ∈ Z+. Further, ∀a ∈ A, a size s(a) satisfies B/4 < s(a) <
B/2 and

∑
a∈A s(a) = K · S. The 3-Partition problem aims to

answer whether A can be partitioned into K disjoint subsets
A1, A2, . . . , AK such that

∑
a∈Ai

s(a) = B for 1 ≤ i ≤ K .
Before demonstrating the reduction, we first construct a graph

G with 3K small graphs, each of which corresponds to an element
a in A. Notice that one small graph w.r.t. a has s(a) vertices
or edges, that depends on how we measure the computation
workload in GPP. Because a and B are both polynomially bounded,
the graph construction can be performed in polynomial time.

Now if we can find a solution for a 3-Partition instance, we can
also employ such solution to perfectly solve the (K , 1)-balanced
GPP problem in G with

∑
i∈[1,K] |V

tar
i | = 0, i.e., zero network

cost in iterative computation. More specifically, each partitioned
sub-graph has exactly 3 small graphs with total B vertices if
|Gi| = |Vi| or edges if |Gi| = |Ei|, and then no edge is cut
between any two sub-graphs. Conversely, if we cannot find such
solution, there exists one cut edge at least in the partition of G,
i.e.,

∑
i∈[1,K] |V

tar
i | ≥ 1. Hence, (K , 1)-GPP is also NP-Complete

when K ≥ 3. □

In adjacency lists, because all outgoing edges of v like (v, u)
share the same source, we store an edge only by the correspond-
ing target like u, to reduce storage space. That is, one list adj
is given by {v, Γv}, where v is the source and Γv is the set of
targets, i.e. Γv = {u|(v, u) ∈ E}. Then GPP should partition every
adjacency list {v, Γv} as a whole into K sub-graphs.

Recall that the traditional streaming graph partitioning [14,15]
requires one-pass data access, which decreases Cp. However, it
is usually performed in a centralized way to accurately maintain
heuristic rules and then reduce the number of cut edges for effi-
cient graph computation. The scalability is poor when partition-
ing very large graphs. On the other hand, the distributed method
with good scalability, like Hash, abandons heuristic rules and
hence generates a lot of communication costs in graph computa-
tion. Neither of them can well solve our GPP problem. However,
we find that the goal of optimizing

∑
i∈[1,K] |V

tar
i | and the locality

in real-world graphs (see Section 3) enable us to simplify heuristic
rules (see Section 4) so that they can be performed in parallel.

to Ref. [12]. We omit the proof since for Pregel-like systems, K is much greater
than 2 in most cases.

N. Wang, Z. Wang, Y. Gu et al. / Future Generation Computer Systems 101 (2019) 804–818 807

3. Locality of real-world graphs

The complex relationship among real-world entities can be
generally modeled by graphs with some locality. This section ana-
lyzes the locality and then demonstrates it over many real-world
graphs. The locality is the foundation of our new partitioning
solution introduced in Section 4.

3.1. Theoretical analysis

Intuitively, entities as vertices have similar behaviors, i.e., they
have many edges linking to the common target vertices. Taking
social networks as an example, if A and B are friends, then some
of their friends overlap, i.e., they have a lot of common neigh-
bors. Grouping A and B into one sub-graph of course increases
the probability of combining outgoing messages sent to their
neighbors, that decreases the communication overhead.

Given any two vertices v, u ∈ V , their similarity naturally
can be measured by the size of the intersection of Γv and Γu. In
particular, we use the well-known Jaccard coefficient J(Γv, Γu) as
the metric which normalizes the intersection size by the size of
the corresponding union, as shown in Eq. (2). We are aware that
another metric, triangle [18], can also capture the intersection of
neighbors. However, a triangle requires v is adjacent to u, that is
over-strict for combination.

J(Γv, Γu) =
|Γv

⋂
Γu|

|Γv

⋃
Γu|

(2)

Fig. 2 gives an example graph with 7 vertices and 11 edges.
Here, Γ1 = {2, 3, 4} and Γ5 = {2, 3, 4, 6, 7}. They share the target
vertices {2, 3, 4} and hence J(Γ1, Γ5) = 0.6. On the other hand,
the intersection of Γ3 and Γ4 is empty and then J(Γ3, Γ4) = 0.

Locality: The locality of a graph G, LG, is given based on the Jaccard
similarity. ∀v ∈ V , we first compute its vertex similarity in G by
averaging J(Γv, Γu) for all u ∈ V/{v}. The vertex similarity shows
how likely messages from v can be combined with messages
from other vertices. Then LG is the |V |-normalized summation
over all vertex similarities, as shown in Eq. (3). Clearly, a big LG
value indicates that a lot of target vertices are shared by edges,
that is, many messages can be combined in Pregel if data are
placed in a reasonable way. We now analyze the computational
complexity of LG. First of all, because of the symmetry, J(Γv, Γu) =
J(Γu, Γv) and they are respectively involved in computing the
vertex similarity of v and u. This motivates us to employ an array
of size n = |V| to accumulate J(Γu, Γv) for u if v’s vertex similarity
is firstly computed, and vice versa. Accordingly, Eq. (3) only needs
to call the subroutine of Eq. (2) n(n−1)

2 times. More specifically, a
simple yet efficient implementation of Eq. (2) is to sort Γv and
Γu using merge sort, and then compute their intersection and
union by traversing elements in the two sorted sets. That leads
to a computational complexity of O(n log n). Together, the final
computational complexity of LG is O(n3 log n). It is so high that
we cannot validate the locality for very large graphs.

We should stress that even though v and u are not stored
adjacently, we still need to compute J(Γv, Γu). This is because
messages in Pregel-like systems are usually sent in a batch fash-
ion. The system sets a sending threshold. All messages sent by a
worker will firstly be cached in the local sending buffer. When the
number of buffered messages exceeds the threshold, these mes-
sages are immediately flushed out. By this way, the system can
make full use of the network idle time and reduce the overhead
of building connections. Assume that v and u are far from each
other in the local storage. Theoretically, they are updated with
poor time locality since vertices are scanned in the storage order.

However, messages from v possibly can be combined with those
from u due to the existence of sending buffer.

LG =
1
|V |

∑
v∈V

(1
|V | − 1

∑
u∈V/{v}

J(Γv, Γu)
)

(3)

Clustered-locality: Our further analysis finds that vertices as
sources in adjacency lists may naturally have been clustered in
some way and then stored adjacently in the original input file.
Together with locality based on the vertex-similarity, we call this
phenomenon as clustered-locality. It can be quickly measured and
can also be used to approximately estimate the locality metric LG.
More importantly, we can utilize it to enhance the performance
of our partitioning method.

We now enumerate some reasons that make vertices clustered
in real graphs. For example, to our knowledge, graphs are usually
constructed by traversing real-world entities in a Bread-First
Search (BFS) fashion [19]. Given a currently traversed vertex v

as source, BFS will traverse target vertices newly found in v’s
outgoing edges. Such target vertices are regarded as new sources
from which new BFS procedures start. The target vertices newly
found in one BFS traverse are then stored adjacently (clustered).
As another example, vertices in a connected component can also
be clustered when graph data are collected.

For a graph with good locality, edges of many vertices as
sources will link to these adjacent vertices as targets. As a con-
crete example, the graph shown in Fig. 2 is BFS-generated. Start-
ing with the source vertex ‘‘1’’, new target vertices ‘‘2’’, ‘‘3’’ and
‘‘4’’ are detected. They are then traversed immediately and stored
adjacently. Later, when vertex ‘‘5’’ is traversed, we can observe
that some of its edges also link to adjacent vertices ‘‘2’’, ‘‘3’’,
and ‘‘4’’. This property motives us to measure clustered-locality
by evaluating the adjacent degree of target vertices in every
adjacency list, i.e., approximate locality L̃G. Clearly, if most target
vertices in every list are adjacent, the similarity between any two
vertices is potentially increased, i.e., LG is large. Thus, L̃G can be
used to approximately estimate LG.

We next focus on quickly computing L̃G. Assume that vertex
ids are numbered consecutively in the natural storage order. The
difference between two vertex ids is then inversely proportional
to the adjacent degree. Motivated by this, given a vertex v and
the set of its k target vertices Γv (k = |Γv|), we can measure
the adjacent degree f (v) in the following way: (1) sorting entries
in Γv in ascending order of ids to get the sequence sort(Γv) =
(u1, u2, . . . , uk); (2) summing up the id difference between ui and
ui+1, i.e., Id(ui+1)− Id(ui), through a loop from i = 1 to i = (k−1);
(3) normalizing the summation by (k − 1). Note that f (v) = 0
when k ≤ 1. Eq. (4) mathematically shows how to compute
f (v). Accordingly, we compute L̃G by firstly summing up adjacent
degrees of all vertices and then normalizing the summation by
|V |, as shown in Eq. (5). Let d stand for the maximum out-degree
for vertices in V and m = |E|. When using sort merge to com-
pute sort(Γv), the computational complexity of L̃G is O(m log d).
Because m ≪ n2 and d ≤ n (n = |V |), O(m log d) is smaller than
O(n3 log n) w.r.t. LG.

f (v) =

{ k−1∑k−1
i=1

(
Id(ui+1)−Id(ui)

) , k > 1 and ui ∈ sort(Γv)

0, k ≤ 1
(4)

L̃G =
1
|V |

∑
v∈V

f (v) (5)

808 N. Wang, Z. Wang, Y. Gu et al. / Future Generation Computer Systems 101 (2019) 804–818

Fig. 2. Similarity between two vertices.

3.2. Evaluation

We validate that locality and clustered-locality indeed exist
by showing the ratio of LG and L̃G over a real graph to LG(rd)
and L̃G(rd) over a corresponding random graph (termed ‘‘rd’’),
respectively.

As listed in Table 1, real graphs used in this paper are collected
from a broad class of applications. Specifically, WikiVote4 con-
tains the Wikipedia voting data where vertices represent users
and an edge from vertex v to vertex u represents that user v elects
user u as one of administrators of the free encyclopedia; Email-
EU5 is a network generated using email data from an European
research institution where one vertex corresponds to an email
address and an edge between v and u is created if v has sent at
least one message to u; Slashdot,6 Epinions,7 Livej,8 and Orkut9
are social networks; while, Berkeley10 and Wikipage11 are web
crawls; Amazon12 is a product co-purchasing network where
vertices represent products and there exists an edge between
two products if they are frequently co-purchased. On the other
hand, a random graph has the same number of vertices and edges
with the corresponding real graph. We generate a random graph
without locality by adding edges using the following procedure:
for a vertex with identifier v, 1 ≤ v ≤ |V |, we add davg = |E|

|V |
edges connecting it to vertices chosen uniform randomly from
the interval [1, |V |]. Note that in the original input file of every
graph, one adjacency list is a line and the source vertices of all
lists have already been numbered consecutively in their storage
order. We do not make any change such as re-ordering lists based
on BFS. When computing LG, L̃G, LG(rd) and L̃G(rd), adjacency lists
are streamed in the natural storage order originally provided in
the input file.

Table 1 summarizes graph features and metric values. L̃G
L̃G(rd)

>

1.0 indicates that real graphs outperform random graphs in terms
of clustered-locality. On the other hand, for LG, we do not test it
for large graphs Livej, Wikipage and Orkut, because of the high
computational complexity. However, we generally observe that

LG
LG(rd)

>
L̃G

L̃G(rd)
over every small graph except Amazon. Together

with L̃G
L̃G(rd)

> 1.0, we can reasonably infer that LG
LG(rd)

is consis-
tently greater than 1.0. That is, real graphs have better locality
than random graphs. The validation of locality and clustered-
locality is a key basis to design our new partitioning method in
Section 4.

4 http://snap.stanford.edu/data/wiki-Vote.html.
5 http://snap.stanford.edu/data/email-EuAll.html.
6 http://snap.stanford.edu/data/soc-Slashdot0811.html.
7 http://snap.stanford.edu/data/soc-Epinions1.html.
8 http://snap.stanford.edu/data/soc-LiveJournal1.html.
9 http://law.di.unimi.it/webdata/orkut-2007/.

10 http://snap.stanford.edu/data/web-BerkStan.html.
11 http://haselgrove.id.au/wikipedia.htm.
12 http://snap.stanford.edu/data/amazon0302.html.

4. Target-vertex sensitive hash partitioning

This paper proposes a Target-vertex Sensitive Hash (TSH) to
parallelize streaming partitioning by leveraging the graph local-
ity. We now formally give the heuristic rule, followed by its
distributed implementation.

4.1. Heuristic rule

The biggest difference between existing streaming solutions
[14–16] like LDG and our TSH is that the former try to reduce the
number of cut edges to improve the communication efficiency,
while the latter achieves this goal by increasing the probability
of combining messages. Specifically, LDG, for example, uses the
distribution of source vertices in already assigned adjacency lists
as heuristic information. It assigns a newly streamed adjacency
list {v, Γv} to the sub-graph that has the most common sources
with out-neighbors as targets in Γv . Clearly, the distribution
table in LDG changes when new adjacency lists as well as the
corresponding source vertices are assigned. It is really expensive
to synchronize the change across distributed workers. On the
other hand, TSH improves the combination hit ratio by grouping
adjacency lists with the most common out-neighbors into the
same sub-graph. Then Pregel can combine messages sent to the
same target vertices as much as possible. As shown in Table 1,
real graphs usually have good locality—many lists share a lot of
common out-neighbors. Thus, we can logically assume a distribu-
tion of target vertices as heuristic to guide data placement. That
is, a new adjacency list is assigned to the sub-graph with the
most common out-neighbors/targets in the corresponding logical
distribution table.

Motivated by this, we design a two-step partitioning frame-
work for TSH where in the first step an expected distribution
of target vertices is logically computed and in the second step
adjacency lists are physically loaded and grouped.

We call the first step as pre-partitioning since it happens be-
fore the input graph is physically partitioned. Its output is K dis-
joint subsets of V , i.e., {T1, T2, . . . , Ti, . . . , TK }, where

⋃
i∈[1,K] Ti =

V . Ti corresponds to the sub-graph Gi, indicating that we expect
adjacency lists with (almost) the same target vertices in Ti to be
assigned into Gi. Then messages sent to these target vertices can
be effectively and efficiently combined. Later we will give two
pre-partitioning implementations.

TSH feeds a series of adjacency lists and the pre-partitioning
result into the second step. One list adj consisting of a source v
and its target set Γv is a line in the original input file, as shown
in Fig. 2. Lists are streamed along loading data in Pregel and then
assigned to sub-graphs/workers. A list is never moved after it has
been assigned. Hence, TSH is a streaming partitioning method.
When adj arrives at the time instance t , we naturally hash it
into Gi with Ti sharing a maximum number of targets with Γv .
Eq. (6) gives a mathematical description. Here, gid is the id of the
selected sub-graph. w(t, i) is the real-time remaining workload
capacity of sub-graph Gi at time t . It works as a penalty function

http://snap.stanford.edu/data/wiki-Vote.html
http://snap.stanford.edu/data/email-EuAll.html
http://snap.stanford.edu/data/soc-Slashdot0811.html
http://snap.stanford.edu/data/soc-Epinions1.html
http://snap.stanford.edu/data/soc-LiveJournal1.html
http://law.di.unimi.it/webdata/orkut-2007/
http://snap.stanford.edu/data/web-BerkStan.html
http://haselgrove.id.au/wikipedia.htm
http://snap.stanford.edu/data/amazon0302.html

N. Wang, Z. Wang, Y. Gu et al. / Future Generation Computer Systems 101 (2019) 804–818 809

Table 1
Locality of real-world graphs (K = ×103 , M = ×106).

Graphs |V | |E| L̃G L̃G(rd)
L̃G

L̃G(rd)
LG LG(rd)

LG
LG(rd)

WikiVote 7.1K 103K 4.6× 10−3 2.5× 10−3 1.9 1.7× 10−3 2.5× 10−4 6.7
Slashdot 77K 905K 4.8× 10−4 3.6× 10−4 1.4 3.8× 10−4 3.0× 10−5 12.5
Email-Eu 265K 420K 1.0× 10−2 2.2× 10−5 466.5 3.8× 10−3 3.9× 10−6 964.8
Epinions 76K 509K 1.3× 10−4 9.4× 10−5 1.4 3.2× 10−4 1.9× 10−5 16.3
Amazon 262K 1.2M 2.1× 10−2 7.2× 10−5 287.1 2.4× 10−5 8.2× 10−6 2.9
Berkeley 685K 7.6M 6.1× 10−2 4.3× 10−5 1412.0 6.8× 10−3 4.5× 10−6 1507.0
Livej 4.8M 69M 8.2× 10−3 5.1× 10−6 1607.8
Wikipage 5.7M 130M 2.9× 10−3 5.0× 10−6 580.0
Orkut 3.1M 223M 3.4× 10−4 3.2× 10−5 10.6

to balance workloads among sub-graphs. Note that in Pregel,
the majority of iterative computation workload is to generate
messages and then send them along edges. We thereby use the
number of edges |Ei| in a sub-graph Gi to stand for |Gi| and |Ei| =∑

v∈Vi
|Γv|. Then w(t, i) is computed by Eq. (7), where |Et

i | is the
real-time workload of Gi at t and C = |E|K .

gid = arg max
i∈[1,K]
{|Γv ∩ Ti| · w(t, i)} (6)

w(t, i) = 1−
|Et

i |

C
(7)

In a sense, {T1, T2, . . . , TK } is the key to having the heuristic
rule perform well because it directly decides the size of inter-
section Ti ∩ Γv—the combination gain. On the other hand, we
should quickly build {T1, T2, . . . , TK } as the time spent on pre-
partitioning is a fraction of Cp. One possible solution is Hash,
i.e. ‘‘id%K ’’, but target vertices often shared by source vertices
cannot be effectively clustered. Take the graph in Fig. 2 as an
example. Assume that K = 3. Then we have T1 = {3, 6}, T2 =
{1, 4, 7}, and T3 = {2, 5}. Targets {2, 3, 4} shared by sources
‘‘1’’ and ‘‘5’’ are divided into three different subsets. Ignoring
the affect of w(t, i), list adj5 = {5, Γ5 = {2, 3, 4, 6, 7}} will be
randomly put into G1 or G2 since |Γ5 ∩ T1| = |Γ5 ∩ T2| = 2.
Similarly, adj1 = {1, Γ1 = {2, 3, 4}} is randomly assigned among
all three sub-graphs because the intersection size is always 1. The
two lists are grouped into the same sub-graph with low prob-
ability (13) even though their targets are highly similar to each
other. Another preferred solution is to evenly and continuously
partition vertices, termed Range. It preserves the clustered-locality
of graphs but requires that vertices are numbered consecutively
in the storage order. In Fig. 2, the pre-partitioning result under
Range is T1 = {1, 2, 3}, T2 = {4, 5, 6}, and T3 = {7}. adj1 belongs
to G1 and adj5 belongs to G1 or G2. The two lists can be placed
into G1 in high probability (12).

Unlike the dynamically changed distribution of sources in LDG,
the logical distribution of targets in TSH is fixed during parti-
tioning. This simplifies the parallel implementation because every
worker can get a copy of the table before loading data and then
partition data in local stream without maintenance cost on the
table. We should also stress that although TSH keeps the logical
distribution table unchanged, it optimizes the communication
cost by explicitly utilizing graph locality, i.e., the intersection
computation in Eq. (6). For example, Worker1 loads an adjacency
list {x, Γx} and then sends it to sub-graph G2 if (|Γx ∩ Ti| ·w(t, i))
gets the largest value at i = 2, for 1 ≤ i ≤ K . Here, Ti
indicates the assumed set of targets in sub-graph Gi, instead of
source vertices. Ti does not change during partitioning. And after
partitioning, we expect that adjacency lists with most common
neighbors in Ti can be grouped into Gi. Assume that there is
no locality, that is, targets of any source v are chosen uniform
randomly from the interval [1, |V |], resembling the generation
of random graphs mentioned in Section 3.2. Then TSH cannot

effectively group adjacency lists no matter how to pre-partition
target vertices. We verify this in Section 5.5. Further, neither TSH-
H nor TSH-R makes assumptions on the streaming order of lists.
Otherwise, users need to re-sort lists before running our methods.
That increases the pre-processing cost and hence Cp, violating the
condition of minimizing Cp shown in Eq. (1).

4.2. Distributed implementation

We now implement TSH in Pregel-like systems. TSH con-
sists of two procedures: (1) pre-partitioning target vertices into
{T1, T2, . . . , TK } through Hash or Range, shown in Algorithm 1, and
(2) partitioning the input graph by Eq. (6), shown in Algorithm 2.
The former as logical partitioning does not load any input data.
We can run it in a centralized way because of the low runtime
cost. While, the latter needs to physically load every adjacency list
and then call Equation (6) to decide its placement. This motivates
us to parallelize the execution for efficiency. Pregel’s architecture
can facilitate the implementation of TSH where Master is respon-
sible for building {T1, T2, . . . , TK } and workers concurrently load
specified input data for partitioning.

Algorithm 1: Logical pre-partitioning on Master
Input : number of sub-graphs K , metadata of the input

graph D = {|V |, |E|}
Output: pre-partitioning result {T1, T2, . . . , TK } and average

workload C

1 pre-partitioning target vertices into {T1, T2, . . . , TK } based
on D

2 computing the average workload C = D.|E|
K

3 broadcasting {T1, T2, . . . , TK } and C to Workers
4 notifying Workers to start physical partitioning

4.2.1. Logical pre-partitioning
Algorithm 1 demonstrates how to logically pre-partition data

on Master. The goal of this procedure is outputting key infor-
mation required by Eq. (6), including the distribution of target
vertices and the average workload C among workers. The former
is used as heuristic information to guide the placement of a newly
loaded adjacency list. We do not need to physically load target
vertices and then divide them. Instead, we achieve the distri-
bution of target vertices through logical computation (Line 1).
Specifically, when Range is employed, vertices as targets will be
evenly and consecutively divided into K subsets {T1, T2, . . . , TK }.
We achieve this goal by specifying the id range of target vertices
in Ti as [(i − 1) |V |K + α, i |V |K + α], where 1 ≤ i ≤ K and α is the
minimal vertex id in G. The case with Hash is even more simple
because Master does not perform any computation. Instead, given
a target vertex id u.id, we can quickly specify to which subset it
is divided by u.id%K , whenever necessary. On the other hand, the
computation of C is given by |E|K (Line 2). Then Master can notify

810 N. Wang, Z. Wang, Y. Gu et al. / Future Generation Computer Systems 101 (2019) 804–818

workers to physically load input data and partition them after
broadcasting the key heuristic information (Lines 3–4). Notably,
Ti is a pair of figures ((i − 1) |V |K + α and i |V |K + α) for Range or
semantic information ‘‘id%K ’’ for Hash. As analyzed above, Master
will not be the performance bottleneck in terms of computation
and communication.
Algorithm 2: Physical partitioning on Workeri

Input : metadata Di, pre-partitioning result
{T1, T2, . . . , TK }, average workload C , number of
workers K

Output: sub-graph Gi

1 w(t, x)← 1, ∀x ∈ [1, K]
2 Sender:
3 while there exist adjacency lists specified by Di do
4 loading a new adjacency list adj={v, Γv}

5 ŝ← 0
6 c ← ∅
7 foreach x = 1 to K do
8 sx ← |Γv ∩ Tx|·w(t, x)
9 if ŝ < sx then

10 ŝ = sx
11 c = {x}
12 else if ŝ = sx then
13 c = c ∪ {x}

14 gid← randomSelect(c)
15 sending adj to Workergid
16 broadcasting EOF to all workers

17 Receiver:
18 ∆← 0 and local_cnt← 0
19 while #EOF< K do
20 if an adj is received then
21 putting adj into Gi

22 update(i, adj.|Γv |

C)
23 ∆← ∆+

adj.|Γv |

C
24 if local_cnt++ ≥ η then
25 invoking Workerx.update(x,∆) for

x ∈ [1, K] ∧ x ̸= i
26 ∆← 0 and local_cnt← 0

27 Function void update(int x, int dec):
28 w(t, x)← w(t, x)− dec

4.2.2. Physical partitioning
Algorithm 2 gives the implementation of physical partitioning

on Worker i. Note that on each worker, there exist two computa-
tion threads working as Sender and Receiver. Sender loads partial
input graph specified by the metadata Di and then sends every
loaded adjacency list to the target worker/sub-graph selected
by Eq. (6). Meanwhile, Receiver continuously receives the adja-
cency list from any possible Worker and then puts it into the local
sub-graph Gi.

Recall that given an adjacency list adj, Eq. (6) needs to compute
assignment scores of all workers to select the optimal target
worker/sub-graph. This requires Worker i to maintain all penalty
functions where w(t, i) as the local one is managed by Worker i
and others are replicas of functions managed by remote workers.
At the very beginning, no graph data is assigned. Thus, ∀x ∈
[1, K], |Ex| = 0. Based on Eq. (7), Worker i initializes all penalty

function values as 1 (Line 1). Afterwards, the Sender and Receiver
threads are launched.

Sender: Once Sender loads a new list adj, it first resets the
maximal assignment score ŝ and the candidate set of target work-
ers c (Lines 5–6). The two variables are then re-computed for
adj (Lines 7–13). Specifically, following Equation (6), for each
candidate worker Workerx, its assignment score sx is given by
multiplying |Γv ∩ Tx| by w(t, x). The former indicates how many
target vertices are commonly shared by adj.Γv and Tx, aiming
at increasing the probability of combining messages and hence
minimizing the communication cost. While, the latter as a penalty
function can balance the workload among workers. For exam-
ple, if Workerx is overloaded at time t , its w(t, x) will decrease
based on Eq. (7). The resulting score sx gets small to reduce
the probability of assigning adj to Workerx. We generally select
the worker with the highest score as the target to trike a good
balance between communication optimization and workload bal-
ance (Lines 9–11). If several workers have the same score sx and
sx = ŝ, we randomly select one from these candidates (Lines 12–
14). Finally, a worker will broadcast an EOF flag to notify other
workers that it has already processed all of local adjacency lists.

More specifically, computing the intersection size |Γv ∩ Tx|
depends on the pre-partitioning policy. When Range is used, we
compute it by judging whether each target vertex in adj.Γv falls
into the id range of Tx. The size increases by one if yes. If Hash
is employed, we make the judgment by the hashing result of
a target vertex id. Besides, the penalty function value w(t, x) is
read-only in Sender and is used when computing the assignment
score sx (Line 8). The update on w(t, x) is performed by Receivers
of the local or remote workers. We will show the update policy
in the following introduction to Receiver.

Receiver: Because Senders have already considered the commu-
nication cost and workload balance before sending adjacency
lists, the only task of Receiver is to passively receive data until
all Senders finish the loading operation, i.e., the number of EOFs
received is equal to K (Line 19). A newly received adj will be
put into the local sub-graph Gi, which immediately decreases the
remaining capacity w(t, i) by adj.|Γv|/C since we use the number
of edges as the workload metric (Lines 20–22).

Notably, there exist (K − 1) replicas of w(t, i) on other work-
ers. Theoretically, after updating w(t, i), Worker i should imme-
diately synchronize these replicas so that other workers can
utilize the up-to-date w(t, i) when deciding the placement of
their locally loaded adjacency lists. However, frequently per-
forming synchronization requires a lot of network resources. A
compromise solution is to synchronizes replicas of its w(t, i)
in a batch fashion (Lines 23–26). That is, Workeri first locally
accumulates changes w.r.t. w(t, i) into ∆, and then updates the
replica of w(t, i) on Workerx by Workerx.update() if the batch
size local_cnt, i.e., the number of already received lists, exceeds a
user-specified threshold η. We will experimentally give a proper
threshold in Section 5.3.

5. Performance studies

Now we study the performance of our proposals by comparing
them with state-of-the-art partitioning techniques.

Compared Solutions: The main competitors include four well-
known streaming methods: Hash, LDG [14], Fennel [15], and FG
(Fractional Greedy) [16]. Hash is a fast distributed heuristic where
workers load adjacency lists in parallel and then compute the
target sub-graphs by taking the source vertex id of a list modulo
K . By contrast, LDG, Fennel and FG are all centralized but employ
different polices to place streamed adjacency lists and balance the

N. Wang, Z. Wang, Y. Gu et al. / Future Generation Computer Systems 101 (2019) 804–818 811

workload. For TSH, we have two variants: TSH-H with Hash pre-
partitioning and TSH-Rwith Range pre-partitioning. Besides, some
important non-streaming solutions with input graph accessed
multiple times are also tested, like the BFS-based Greedy Graph
Growing technique (GGG) used in METIS [20], the partial re-
streaming variant of FG [16] (PartFG), and XtraPuLP that supports
multiple objective metrics and multiple constraints. Among them,
GGG and PartFG are centralized while XtraPuLP is distributed. In
particular, PartFG re-streams a portion of the input graph multiple
times and the rest of graph is streamed only once. Compared
with re-streaming the whole graph [21], PartFG can minimize the
runtime while providing acceptable partitioning quality. XtraPuLP
is based on iterative label propagation technique.

We implement Hash, LDG, Fennel, FG, GGG and PartFG by own
in Java, and directly use the open-source XtraPuLP written in C++
on GitHub (https://github.com/HPCGraphAnalysis/PuLP). When
analyzing the partitioning runtime, we parallelize the centralized
LDG, Fennel, FG, GGG and PartFG to perform a fair comparison with
distributed Hash, XtraPuLP and our TSH. The parallel variants are
called pLDG, pFennel, pFG, pGGG and pPartFG, respectively.

We next briefly introduce how to parallelize centralized solu-
tions. For LDG, Fennel, FG and PartFG, they decide the placement
of an adjacency list based on the distribution of lists already
loaded. In distributed environments, adjacency lists are loaded in
parallel but their placements must be broadcasted periodically
so that the subsequent lists can be correctly placed. Clearly, a
short broadcasting interval enables each sub-graph to be aware
of the most recent change on the distribution of vertices, but
incurs expensive communication costs. We experimentally select
a reasonable interval such that the broadcasting cost is mini-
mized while the parallel implementations can achieve similar
partitioning quality to the corresponding centralized versions.
Further, like TSH, LDG, Fennel, FG and PartFG also penalize the
sub-graphs with large size for workload balance. In their parallel
variants, the penalty function value is automatically synchro-
nized along broadcasting placements of lists. For GGG, the parallel
implementation is simply to run BFS in parallel.

General Experiment Setting: All partitioning methods are tested
over four graphs listed in Table 1: Berkeley, Livej, Wikipage, and
Orkut. We integrate all partitioning methods except XtraPuLP into
BC-BSP [8], an open-source Java-based clone of Pregel. Assume
that we launch K workers in BC-BSP for parallel computation.
For centralized partitioning methods, only one worker works in
the partitioning phase to get K sub-graphs. By contrast, parallel
variants can fully utilize the total K workers. After partitioning,
we run a real application PageRank with 30 iterations on BC-BSP
to show the impact of partitioning on performance. For XtraPuLP,
we first run it to get a partition and then feed the partition into
BC-BSP for iterative computation. In BC-BSP, the sending buffer
size on each worker is measured by the number of buffered
messages. Our testing cluster has 21 machines where one of them
works as Master. All machines are connected by Gigabit Ethernet
to a switch. Each has 2 Intel Core i3-2100 CPUs, 8GB RAM, and
a 500GB disk with 7,200 RMP. Notice that each machine except
Master runs a single worker to avoid resource contention. Unless
otherwise specified, the input graph is always divided into K =
20 sub-graphs which are evenly placed on the total 20 workers.
Finally, for streaming methods, adjacency lists are streamed in the
natural storage order in the input graph file.

Evaluation Metrics: This paper cares about both partitioning
quality and efficiency. Specifically, we evaluate partitioning qual-
ity from two perspectives: the communication cost in iterative
computation and the load balance factor across sub-graphs. Let
|M| be the number of messages actually transmitted via network
when computing PageRank. We use the ratio of |M| to |E| to

measure the communication cost (com-ratio). On the other hand,
Eq. (1) tells us that the load balance factor ρ is given by ρ =

max{|Gi|}/
|G|
K , i ∈ [1, K]. |Gi| can be the number of vertices |Vi|

or edges |Ei|. For efficiency, we analyze the partitioning runtime
Cp, iterative PageRank computation runtime Cc and their sum—
overall runtime C . Clearly, for all metrics except ρ, lower values
are preferred. For ρ, it is expected to be close to 1.0.

Experiment Organization: In the following, we first analyze
the performance of streaming partitioning methods in terms of
partitioning quality (Section 5.1) and efficiency (Section 5.2),
and then explore the impact of different batch sizes on TSH
(Section 5.3). We next test the scalability in different K settings
(Section 5.4). We also demonstrate the importance of locality
by analyzing the partitioning quality over a random graph (Sec-
tion 5.5). We then compare TSH with complex non-streaming
partitioning techniques (Section 5.6). Finally, we verify that TSH
can quickly output a partition with good locality (Section 5.7).

5.1. Partitioning quality

In this group of experiments, we analyze partitioning quality
of streaming methods. Note that although TSH focuses on edge-
based balance, we still report both vertex- and edge-based ρ
values for a complete comparison. The batch size threshold η
used in TSH-H and TSH-R is set as η = 103 to reduce the
synchronization cost. We will give a detailed discussion about η
in Section 5.3.

Fig. 3 reports the communication ratios over different graphs.
Because |M| relies on how many messages can be buffered at
the sender side, we vary the buffer size from 104 to inf in
experiments, where inf indicates that the buffer is big enough
to store all messages from a sub-graph. In this case, all messages
generated by one sub-graph but sent to the same target can be
combined into a single one, yielding the best combination effect.

LDG, Fennel and FG consistently perform best because of the
centralized update for heuristic rules. In particular, the three
solutions have the similar behaviors because the combination
function in Pregel narrows their performance gap in terms of
reducing the number of cut edges. TSH-H works better than Hash
as the latter completely ignores the distribution of already placed
adjacency lists. By preserving clustered-locality, TSH-R further out-
performs TSH-H. In particular, compared with distributed Hash
and TSH-H, TSH-R respectively reduces the communication ratio
by 69% and 38% at most (from 28% and 14%). On the other hand, it
offers a comparable performance to the best competitors, i.e., the
centralized LDG, Fennel and FG. The only drawback of TSH-R is
that it requires to consecutively number vertex ids in the storage
order. Further, we observe that the performance gap among all
solutions is narrowed with the increase of the sending buffer
size. This is because a large buffer size naturally increases the
probability of combining messages, and hence weakens the effect
of partitioning. The similar trend can also be observed when K
increases as shown in Fig. 6(a) in the scalability test (Section 5.4).
That explains why Fennel, LDG and FG perform similarly when
K = 20 in terms of com-ratios in Fig. 3.

Fig. 4 demonstrates the edge- and vertex-based load balance
factors. Hash is better than others for both factors because of
the random data placement policy. Benefiting from the Hash-
based pre-partitioning, TSH-H has similar performance to Hash.
Differently, LDG, Fennel, FG and TSH-R focus on balancing the
edge-based workload. They then perform poorly from the per-
spective of the vertex-based balance factor. Recall that in Pregel,
the computation workload of many graph algorithms like PageR-
ank is mainly dominated by the number of edges. Hence, as we
will show later, LDG, Fennel, FG and TSH-R can still improve the
computation efficiency, even though the distribution of vertices
is skew.

https://github.com/HPCGraphAnalysis/PuLP

812 N. Wang, Z. Wang, Y. Gu et al. / Future Generation Computer Systems 101 (2019) 804–818

Fig. 3. The communication ratios (com-ratios) over different graphs (K = 20).

Fig. 4. The balance factors w.r.t. edges and vertices (K = 20).

5.2. Partitioning efficiency

We then explore the efficiency features with the sending
buffer size fixed to 104. Table 2 gives the detailed reports of Cp,
Cc , and their sum C . Because the runtime of Berkeley is less than
1 s, we omit it for brevity.

For Cp, we can easily find that Hash, TSH-H and TSH-R have al-
most the similar performance. All of them run 2.6–8.4 times faster
than the centralized LDG/Fennel/FG. In particular, the parallel
execution of the latter brings marginal benefit because of broad-
casting costs. For Cc , TSH-R, (p)LDG, (p)Fennel, and (p)FG reduce
the computation runtime by roughly 16%, when compared with
Hash. The reduction of runtime in BC-BSP is generally below that
of communication ratios (28%–54%) shown in Fig. 3(b)-Fig. 3(d).
Ref [22] also finds this phenomenon and makes an explana-
tion. That is, there exist two kinds of messages on a worker:
remote messages sent to other workers and local ones sent to
that worker. Many systems including BC-BSP allocate more com-
putation resources for the former than the latter. Clearly, the
local message processing becomes a performance bottleneck if
a good balanced graph partition is provided. Thus, the reduc-
tion of communication ratios cannot be fully transferred into
the performance improvement. Note that under LDG, Fennel and
FG, the Cc values are almost the same because of their similar

communication ratios as shown in Fig. 3. We finally analyze the
overall runtime C . Hash generally beats (p)LDG, (p)Fennel and
(p)FG, since the communication gain of the latter is offset by the
expensive partitioning cost. Further, TSH-R strikes a good balance
between partitioning quality (Cc) and efficiency (Cp). It achieves
the most significant gain. The runtime improvement is up to 16%
(from 9%) compared against Hash and 19% (from 15%) compared
against pLDG, pFennel and pFG.

5.3. Determining the batch size threshold of TSH

TSH-R usually exhibits prominent performance in partitioning
quality and efficiency. However, it requires to periodically syn-
chronize the penalty function to well balance workload. Fig. 5 de-
picts the impact of different synchronization intervals, i.e., batch
size thresholds η, on the overall runtime C , communication ratio,
and edge-based load balance factor.

First of all, increasing the batch size significantly drops the
times of synchronizing penalty functions and then reduces the
overall runtime, as shown in Fig. 5(a). Second, Fig. 5(b) shows
that the communication ratio can be slightly optimized when the
batch size is extremely large. A large synchronization delay is
equivalent to relaxing the balance constraint. Then partitioning
adjacency lists will heavily depend on the intersection of Ti and

N. Wang, Z. Wang, Y. Gu et al. / Future Generation Computer Systems 101 (2019) 804–818 813

Table 2
Runtime (second; sending buffer = 104; K = 20).

Solutions Livej Wiki Orkut

Cp Cc C Cp Cc C Cp Cc C

Hash 10.7 110.3 121.0 14.1 173.0 187.1 18.1 265.1 283.2
LDG 50.8 90.4 141.2 88.2 141.8 229.9 130.7 217.3 348.0
Fennel 53.1 89.4 142.5 90.7 138.2 228.9 140.8 213.4 354.2
FG 51.4 88.8 140.2 88.4 138.4 226.8 129.5 212.1 341.6
pLDG 39.0 91.2 130.2 60.4 140.9 201.3 76.3 215.0 291.3
pFennel 41.9 90.2 132.1 64.7 136.9 201.6 84.4 214.1 298.5
pFG 38.4 92.6 131.0 60.9 139.5 200.4 78.9 213.0 291.9
TSH-H 19.6 95.6 115.2 19.9 150.7 170.6 15.8 227.9 243.7
TSH-R 19.0 91.1 110.1 17.1 145.8 162.9 15.5 221.8 237.3

Fig. 5. The impact of η on TSH-R (sending buffer = 104; K = 20).

Γi as seen in Eq. (6), in order to combine messages as much as
possible. The side effect is of course the skewed distribution of
edges, as plotted in Fig. 5(c). Hence, in experiments above, we
use η = 103 as the default value to balance the partitioning cost
and the load balance factor. TSH-H uses the same setting.

5.4. Scalability

We next study how partitioning quality and efficiency scale
when varying the K values, i.e., the number of workers. The built-
in fair scheduler in BC-BSP guarantees that no matter how many
workers there are, they can be evenly scheduled onto 20 physical
machines. Here we call the sending buffer size in BC-BSP as SB
for short. When analyzing the partitioning quality, we exclude
pLDG, pFennel and pFG in figures for brevity because they provide
similar performance to their centralized versions. Without loss of
generality, all experiments are run over Wikipage.

Fig. 6(a) and (b) plot the communication ratio (|M|
|E|) as a func-

tion of K . The results include 2 different values for SB: 104 and inf.
On both settings, TSH-R significantly outperforms Hash and TSH-
H, and consistently provides a comparable performance to LDG,
Fennel and FG. Note that the variation of K may affect |M|, the
number of messages actually transmitted via network. Intuitively,
with increasing K , the total number of messages generated by all
workers will increase because more edges become cut edges. |M|

generally increases. However, the number of messages generated
by a single worker may decrease since the sub-graph assigned
to it becomes small. Given a fixed-size sending buffer on each
worker, that potentially increases the probability of combining
messages, leading to a reduction of |M|. As a result, the variation
of |M| is non-deterministic. Then we can explain why the ratio
temporarily drops around K = 60 in Fig. 6(a). In particular, for
larger values of K such as K ≥ 100, the number of messages
generated by a worker is so low that the sending buffer can
hold all messages to fully combine them. In this scenario, the
combination effect is fixed. |M| thereby consistently increases
with K . Fig. 6(b) also verifies our analysis because SB=inf always
guarantees a full combination. Besides, sub-figure (a) reveals that
Fennel beats all other solutions when 2 ≤ K ≤ 10, with a clear
performance gap. However, the gap narrows with growing K . This
is mainly due to the enhanced effect of combination as explained
above, which weakens the effect of partitioning.

We then investigate the partitioning quality in terms of edge-
based load balance factor. We omit the vertex-based factor be-
cause Fig. 4(b) and Table 2 have shown that a moderately skewed
distribution of vertices does not affect the overall runtime of
PageRank. Fig. 6(c) shows that with growing K , the factors of
all solutions slightly increase, because the average workload |G|K
becomes smaller and then is more sensitive to the real workload
distribution. However, the increased factors are still acceptable
(< 1.15).

814 N. Wang, Z. Wang, Y. Gu et al. / Future Generation Computer Systems 101 (2019) 804–818

Fig. 6. Scalability (Wikipage).

We next focus on the partitioning efficiency, i.e., Cp. Fig. 6(d)
shows the results of all solutions including the parallel variants
of LDG, Fennel and FG. The trends of Cp against K fall into three
categories. (1) The Cp values of centralized LDG, Fennel and FG
monotonously increase with K . This is mainly because a large K
increases the number of candidate target sub-graphs when decid-
ing the placement of a newly loaded adjacency list, increasing the
computation complexity. (2) By contrast, Cp simply drops with
K for Hash due to the parallel execution. (3) Different from the
two cases mentioned above, the variation of Cp is more complex
for parallel partitioning methods pLDG, pFennel, pFG, TSH-H and
TSH-R. It first drops like the trend in Hash for the same reason.
When K further increases, however, the number of adjacency lists
on each worker decreases. Then we need to use a short interval
to synchronize the penalty function value to achieve a good bal-
ance factor. The resulting Cp value becomes large. Because pLDG,
pFennel and pFG need to additionally synchronize the placements
of adjacency lists, they consistently cost more time than TSH-
H and TSH-R. The final case motivates us to smartly select a
proper partitioning solution between TSH-R and Hash based on
K , to dynamically optimize Cp. We plan to investigate this issue
as future work.

5.5. Comparison over random graphs

Fig. 7 repeats the experiments in Fig. 3(c) but on a random
graph with the same number of vertices and edges in Wikipage.
It is generated as described in Section 3.2. Comparing Fig. 7 with
Fig. 3(c), all partitioning solutions perform poorly on the random
graph. In particular, TSH-R and TSH-H are even roughly equivalent
to Hash. This is mainly due to the absence of locality. In another
word, the locality property is significantly important for TSH to
implement distributed streaming partitioning with high quality.

5.6. Comparison against non-streaming partitioning methods

We now compare our best solution TSH-R against complex
non-streaming techniques GGG, PartFG, and XtraPuLP. Here, the
sending buffer is always set to 104. Further, because GGG is

Fig. 7. Communication ratio over a random graph (K = 20).

a 2-way partitioning method, we solve the K -way partitioning
problem by recursively invoking GGG. Then after log K passes, we
obtain K sub-graphs. The K values in this group of experiments
then range in {2, 4, 8, 16}. When running PartFG, we follow the
author’s default parameter setting, that is, half of the graph is
re-streamed 10 times. Different from other competitors, XtraPuLP
is more complex because of its multiple objectives (minimizing
the global cut edges and the maximal cut edges of any sub-
graph) and multiple constraints (vertex- and edge-based balance).
The partitioning quality and efficiency largely depend on which
objective and constraint are selected and/or set. To perform a fair
comparison, we set the target vertex- and edge-based balance
factors as the same values reported by TSH-R. Also, after many
trials, we find that both of the two objective metrics should be
used for good quality. Besides, in XtraPulP, we disable the thread
level parallelism in each worker since other solutions now do not
support that.

Quality: Fig. 8 investigates the variation of the communication
ratios over different graphs. We analyze the behaviors of all
competitors in the following. (1) TSH-R vs. GGG: Both are trying to
utilize the locality provided by BFS. TSH-R should work well if the
input graph is crawled by BFS. However, the condition cannot be
strictly guaranteed in real world. Instead, GGG grows a sub-graph

N. Wang, Z. Wang, Y. Gu et al. / Future Generation Computer Systems 101 (2019) 804–818 815

Fig. 8. The com-ratios of non-streaming methods (sending buffer = 104).

Fig. 9. The edge-based balance factor of non-streaming methods (sending buffer = 104; K = 20).

around a source vertex by including newly traversed adjacency
lists in BFS. In theory, GGG should beat TSH-R because of its strict
BFS traverse. However, it simply terminates when half of edges
have been included in the new sub-graph. The lack of penalty
function prevents it from including more reasonable data that
so far has not been traversed. Hence, for TSH-R and GGG, one
cannot consistently outperform the other. (2) Because of multiple
re-streaming operations, PartFG has a steady com-ratio lower than
GGG and TSH-R. (3) Before analyzing XtraPuLP, we first report the
edge-based balance factor on some graphs since this metric is
important for computation runtime Cc as shown in Section 5.2. In
Fig. 9, all methods except XtraPuLP can well balance the number
of edges across sub-graphs. For the exception, comparing Fig. 8(c)
and Fig. 9(a) (or Fig. 8(d) and Fig. 9(b)), we find that XtraPuLP
automatically strikes a balance between reducing com-ratio and
guaranteeing the edge-based load balance target. In fact, it is
designed to strictly guarantee the user-specified vertex-based
balance target but only try its best effort for edge-based balance.
That might affect the runtime of real applications as we will
show in later. Note that com-ratio on Wikipage first increases and

then decreases. We have given the explanation (for Fig. 6(a)) in
Section 5.4.

Efficiency: Table 3 then reports the runtime performance of non-
streaming methods. Now the parallel variants of GGG and PartFG
are included. We use Wikipage as the example graph since the
up-to-date XtraPuLP achieves good quality considering com-ratio
and the edge-based balance factor.

As expected, Cp for GGG monotonously increases with K be-
cause the number of data scans log K is proportional to K . Cp
for PartFG is also large but not sensitive to K as GGG. Instead,
it is decided by the re-streaming times. Further, although Cp
is reduced in the parallel pGGG and pPartFG, it is still greater
than our TSH-R where the input data is accessed only once. That
leads to an overall success on runtime C (up to 26% and 48%
improvements respectively compared with pGGG and pPartFG).

Notice that XtraPuLP limits the iteration number of label prop-
agation for fast partitioning. Together with the efficient C++ im-
plementation, its Cp is smaller than that in pGGG and pPartFG in
most cases but still greater than that in TSH-R. On the other hand,
XtraPuLP theoretically can decrease Cc because of its low com-
ratio. However, when the distribution of edges across sub-graphs
is heavily skewed, workers running fast must wait for workers
running slowly. The gain achieved by communication reduction

816 N. Wang, Z. Wang, Y. Gu et al. / Future Generation Computer Systems 101 (2019) 804–818

Table 3
Runtime of non-streaming methods (second; Wikepage; sending buffer = 104).

Solutions K = 4 K = 8 K = 16

Cp Cc C Cp Cc C Cp Cc C

GGG 123.1 652.9 775.9 187.3 335.4 522.7 264.7 172.6 437.2
PartFG 410.5 606.5 1017.0 417.2 241.4 658.6 425.4 138.1 563.6
pGGG 92.4 654.9 747.3 106.1 336.6 442.7 90.4 174.1 264.5
pPartFG 334.6 608.4 943.0 304.6 244.1 548.7 238.1 139.2 377.3
XtraPuLP 107.4 592.7 700.1 97.9 241.8 339.7 61.5 146.4 207.9
TSH-R 57.6 656.1 713.7 41.2 333.5 374.7 25.4 168.6 193.9

Fig. 10. Locality of each sub-graph (Berkeley, sending buffer = 104 , K = 16).

might be offset by the waiting cost (as shown in the case of K =
16). Finally, considering the overall runtime C , XtraPuLP beats all
other competitors and even our TSH-R. For a fair comparison, we
also implement TSH-R in C++ and find that the Java-version runs
roughly 2x slower than the C++ version. This is also validated in
Ref. [23]. Thus, TSH-R still works better than XtraPuLP.

5.7. Locality of partitioned sub-graphs

We finally analyze the locality LGi for each sub-graph Gi after
partitioning. LGi is computed using Eq. (3) but V is replaced with
Vi in Gi. A big LGi is preferred because it indicates that there
are many common out-neighbors and then messages for such
neighbors can be combined in high probability, that decreases
com-ratio. Based on the com-ratio performance shown in Figs. 3
and 8, we select FG, PartFG, XtraPuLP and our TSH-R as representa-
tive advanced methods. We compare them with the baseline Hash
method. Without loss of generality, all tests are run on Berkeley
with sending buffer equal to 104 and K = 16. Fig. 10 then depicts
LGi for each sub-graph Gi.

Clearly, the sub-graph locality under advanced methods is
significantly greater than that under random Hash. Further, all
advanced methods except TSH-R try to decrease the number of
cut edges between separated sub-graphs. In another word, for ev-
ery sub-graph Gi, they aim to increase the number of inner edges
that link to source vertices in Vi. That potentially increases the
number of common out-neighbors for edges in Ei and hence com-
ratio gets smaller. However, TSH-R directly optimizes com-ratio by
grouping adjacency lists with the most common out-neighbors.
It can quickly partition a graph and provide an acceptable high
locality LGi (w.r.t. low com-ratio). Thus, TSH-R works best in terms
of the overall runtime performance as shown in Tables 2 and 3.

6. Related work

This section first lists representative Pregel-like systems and
then summarizes existing partitioning techniques.

6.1. Pregel-like distributed graph computation systems

Distributed graph systems are receiving growing attention
with the emergence of highly scalable iterative computation.
Pregel [2] and Trinity [24] as early representatives are pro-
posed by Google and Microsoft respectively but both of them
are closed-source. To provide publicly available service, many
open source implementations have been released, such as Apache
Hama [3], Apache Giraph [4], GPS [5] and BC-BSP [8,9]. Besides,
some researchers pioneer in iterative analytics on top of general-
purpose data-flow frameworks, like PEGASUS [1], Haloop [25] and
Spark [26]. All systems above necessitate a full pass over the input
graph to load data and then partition data across workers before
parallel computation.

6.2. Partitioning algorithms

This section outlines two important research branches for
graph partitioning: offline and online, followed by a general
overview of dynamic partitioning techniques. The related work
dealing with the problem of hypergraphs is also given as hyper-
graphs capture the target vertex concept naturally.

Offline graph partitioning. There exists a rich literature on
graph partitioning. Many approaches traverse vertices to partition
data based on the graph topology. They scan the input graph
more than one time to gradually refine the partitioning quality.
The most well-known multilevel partitioning solution gradually
coarsens the input graph and then divides the coarsest graph.
Finally it projects the partition back towards the original graph.
METIS [13,20], Scotch [27] and their parallel variants [28,29]
fall into this category. There is yet, however, a costly maximal
matching scheme for clustering in the coarsening phase. In partic-
ular, METIS [20] employs a greedy growing partitioning policy to
divide the coarsest graph. It also utilizes BFS to optimize network
communication. However, as shown in Section 5.6, it might work
poorly due to the lack of penalty function. Worse, as a 2-way
partitioning policy, it must access the input graph log K times to
solve the K -way partitioning problem, increasing the partitioning
runtime. MLP [30] replaces matching with connected compo-
nent computation based on label propagation, yielding a better
efficiency. Some approaches solely rely on iteratively propagat-
ing labels among vertices for parallel graph partitioning [31,32].
Based on label propagation, Slota et al. pay attention to partition-
ing with multiple constraints and multiple objectives respectively
in shared-memory [33,34] and distributed-memory [35] environ-
ments. However, their method called XtraPuLP cannot strictly
guarantee the edge-based balance based on our test. That might
affect the iterative computation efficiency due to the blocking
cost across workers. Also, iterative label propagation costs more
time than our streaming solutions.

Because of multiple data scans, neither multilevel nor iterative
approaches can be run along loading the input graph. They are so-
called offline partitioning algorithms and thereby different from
our online solution.

Online/streaming graph partitioning. Some researchers as-
sume that graph data arrive streamingly. With the arrival of

N. Wang, Z. Wang, Y. Gu et al. / Future Generation Computer Systems 101 (2019) 804–818 817

vertices and/or edges, we can compute the distribution of already
placed data and then decide the placement of newly arrived data.
Clearly, streaming partitioning requires a single data scan and
thereby can be performed along loading data in Pregel-like sys-
tems, referred to here as online partitioning. Online approaches
largely improve the partitioning efficiency although to a certain
extent they compromise the quality. This comprise leads to better
overall performance for a graph processing job [15].

Online partitioning is usually performed in a centralized fash-
ion so as to accurately keep track of the distribution of arrived
data, like LDG [14] and Fennel [15]. The partitioning quality can
be further refined by feeding the output of previously performed
streaming partitioning into the current execution. We call this
full re-streaming if the whole output is used [21] and partial re-
streaming [16], otherwise. Some variants customized for random
walk algorithms [36] and heterogeneous computation environ-
ments [37] have also been explored. However, graphs are rapidly
growing in size, that is well beyond the capability of a single
machine. Note that Shi et al. parallelize the placement decision of
vertices in shared-memory platforms, but data are still streamed
serially, leading to a single machine bottleneck [38]. On the other
hand, Hash can be easily run in distributed environments but at
the expense of extremely poor partitioning quality.

Edge-cut vs. vertex-cut. Till now, all offline and online ap-
proaches we summarized partition vertices into disjoint parts
while edges with endpoints in two different parts are called
cut/external edges and will incur communication costs in itera-
tive computation. However, vertices can be replicated in different
parts (cut vertices) to transfer external edges into internal ones
(both endpoints are in the same part). That is, vertices are par-
titioned into overlapped parts and then communication happens
between vertices and their replicas. Clearly, the two partitioning
policies have totally different goals, i.e., minimizing the number
of cut edges and vertices, respectively, and then the heuristics
employed are technically orthogonal. Also, performing compu-
tation over a vertex-cut based partition requires much more
complicated system design to synchronize values of vertex repli-
cas. To our knowledge, only a few systems support that, like
PowerGraph [39] and GraphX [6]. Hence, although there exist
some distributed online vertex-cut partitioning approaches [39–
41], we still need to develop new solutions for the widely used
edge-cut based partitioning.

Dynamic graph partitioning. Note that the communication
workloads may dynamically change during iterations because
vertices converged usually do not communicate with others. The
original partitioning result thereby becomes suboptimal. Dynamic
partitioning can react to the change by migrating data across
workers in real time [5,42,43]. It can be performed over the out-
put of any original partitioning algorithm including TSH. Hence,
it is complementary to our proposal.

Hypergraph partitioning. Last but not least, the communi-
cation cost of a hyperedge in hypergraphs is also dominated
by the distribution of target vertices. Theoretically, Pregel-like
systems can first transfer the input graph into a hypergraph and
then re-load and partition the transferred graph with hypergraph
partitioning techniques. However, that yields yet another full pass
over input data, increasing Cp compared with streaming solutions.
Worse, hypergraph partitioning is now employing offline (mul-
tilevel [44–47] and iterative [48]) or single-machine online [49]
heuristics. The former require to access graph data multiple times,
that is time-consuming even though some of them can be run
in parallel like Parkway [46], Zoltan [47] and Social Hash Parti-
tioner [48]. On the other hand, the latter has poor scalability due
to limited compute power.

7. Conclusion

This paper investigates the problem of graph partitioning in
Pregel-like systems. We re-define graph partitioning by empha-
sizing the importance of partitioning efficiency and reducing the
number of target vertices in each sub-graph. We accordingly
propose a new partitioning solution TSH to strike a good bal-
ance between partitioning quality and efficiency by leveraging
the newly found graph locality feature. Extensive experiments
confirm the effect of our method.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was supported by China Postdoctoral Science Foun-
dation Grant (2019M652474 and 2019M652473) and the Na-
tional Natural Science Foundation of China (61433008, 61872070,
61528203, and 61602103).

References

[1] U. Kang, C.E. Tsourakakis, C. Faloutsos, Pegasus: a peta-scale graph mining
system implementation and observations, in: Proc. of ICDM, IEEE, 2009,
pp. 229–238.

[2] G. Malewicz, M.H. Austern, A.J. Bik, J.C. Dehnert, I. Horn, N. Leiser, G.
Czajkowski, Pregel: a system for large-scale graph processing, in: Proc.
of SIGMOD, ACM, 2010, pp. 135–146.

[3] S. Seo, E.J. Yoon, J. Kim, S. Jin, J.-S. Kim, S. Maeng, Hama: an efficient matrix
computation with the mapreduce framework, in: Proc. of CloudCom, IEEE,
2010, pp. 721–726.

[4] Apache Giraph. http://giraph.apache.org/.
[5] S. Salihoglu, J. Widom, Gps: a graph processing system, in: Proc. of SSDBM,

ACM, 2013, p. 22.
[6] J.E. Gonzalez, R.S. Xin, A. Dave, D. Crankshaw, M.J. Franklin, I. Stoica,

Graphx: Graph processing in a distributed dataflow framework, in: Proc.
of OSDI, 2014, pp. 599–613.

[7] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, J.M. Hellerstein,
Distributed graphlab: a framework for machine learning and data mining
in the cloud, PVLDB 5 (8) (2012) 716–727.

[8] Y. Bao, Z. Wang, Y. Gu, G. Yu, F. Leng, H. Zhang, B. Chen, C. Deng, L.
Guo, BC-BSP: A BSP-based parallel iterative processing system for big data
on cloud architecture, in: Proc. of DASFAA Workshop, Springer, 2013, pp.
31–45.

[9] Z. Wang, Y. Gu, Y. Bao, G. Yu, J.X. Yu, Hybrid pulling/pushing for I/O-
efficient distributed and iterative graph computing, in: Proc. of SIGMOD,
ACM, 2016, pp. 479–494.

[10] Z. Wang, L. Gao, Y. Gu, Y. Bao, G. Yu, A fault-tolerant framework for
asynchronous iterative computations in cloud environments, IEEE Trans.
Parallel Distrib. Syst. 29 (8) (2018) 1678–1692.

[11] K. Andreev, H. Racke, Balanced graph partitioning, in: Proc. of the Sixteenth
Annual ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), ACM, 2004, pp. 120–124.

[12] R.G. Michael, S.J. David, Computers and Intractability: A Guide to the
Theory of NP-completeness, WH Free. Co., San Fr, 1979, pp. 90–91.

[13] G. Karypis, V. Kumar, Multilevel k-way partitioning scheme for irregular
graphs, J. Parallel Distrib. Comput. 48 (1) (1998) 96–129.

[14] I. Stanton, G. Kliot, Streaming graph partitioning for large distributed
graphs, in: Proc. of SIGKDD, ACM, 2012, pp. 1222–1230.

[15] C. Tsourakakis, C. Gkantsidis, B. Radunovic, M. Vojnovic, Fennel: streaming
graph partitioning for massive scale graphs, in: Proc. of WSDM, ACM, 2014,
pp. 333–342.

[16] G. Echbarthi, H. Kheddouci, Fractional greedy and partial restreaming
partitioning: new methods for massive graph partitioning, in: Proc. of Big
Data, IEEE, 2014, pp. 25–32.

[17] Apache Hadoop. http://hadoop.apache.org/.
[18] S. Thomas, W. Dorothea, Finding, counting and listing all triangles in large

graphs, an experimental study, in: Proc. of Experimental and Efficient
Algorithms, 4th International Workshop, WEA, 2005, pp. 606–609.

[19] M. Najork, J.L. Wiener, Breadth-first crawling yields high-quality pages, in:
Proc. of WWW, ACM, 2001, pp. 114–118.

http://refhub.elsevier.com/S0167-739X(17)32772-3/sb1
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb1
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb1
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb1
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb1
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb2
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb2
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb2
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb2
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb2
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb3
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb3
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb3
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb3
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb3
http://giraph.apache.org/
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb5
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb5
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb5
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb7
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb7
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb7
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb7
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb7
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb8
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb8
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb8
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb8
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb8
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb8
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb8
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb9
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb9
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb9
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb9
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb9
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb10
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb10
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb10
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb10
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb10
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb11
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb11
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb11
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb11
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb11
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb12
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb12
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb12
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb13
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb13
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb13
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb14
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb14
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb14
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb15
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb15
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb15
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb15
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb15
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb16
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb16
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb16
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb16
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb16
http://hadoop.apache.org/
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb19
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb19
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb19

818 N. Wang, Z. Wang, Y. Gu et al. / Future Generation Computer Systems 101 (2019) 804–818

[20] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for
partitioning irregular graphs, SIAM J. Sci. Comput. 20 (1) (1998) 359–392.

[21] J. Nishimura, J. Ugander, Restreaming graph partitioning: simple versatile
algorithms for advanced balancing, in: Proc. of SIGKDD, ACM, 2013, pp.
1106–1114.

[22] Y. Shao, B. Cui, L. Ma, Page: a partition aware engine for parallel graph
computation, IEEE Trans. Knowl. Data Eng. 27 (2) (2015) 518–530.

[23] A. Kyrola, G.E. Blelloch, C. Guestrin, Graphchi: large-scale graph
computation on just a PC, in: OSDI, vol. 12, 2012, pp. 31–46.

[24] B. Shao, H. Wang, Y. Li, Trinity: a distributed graph engine on a memory
cloud, in: Proc. of SIGMOD, ACM, 2013, pp. 505–516.

[25] Y. Bu, B. Howe, M. Balazinska, M.D. Ernst, Haloop: efficient iterative data
processing on large clusters, PVLDB 3 (1–2) (2010) 285–296.

[26] Apache Spark. http://spark.apache.org/.
[27] F. Pellegrini, J. Roman, Scotch: a software package for static mapping

by dual recursive bipartitioning of process and architecture graphs, in:
Proc. of High-Performance Computing and Networking, Springer, 1996, pp.
493–498.

[28] G. Karypis, V. Kumar, A parallel algorithm for multilevel graph partitioning
and sparse matrix ordering, J. Parallel Distrib. Comput. 48 (1) (1998) 71–95.

[29] C. Chevalier, F. Pellegrini, Pt-scotch: a tool for efficient parallel graph
ordering, Parallel Comput. 34 (6) (2008) 318–331.

[30] L. Wang, Y. Xiao, B. Shao, H. Wang, How to partition a billion-node graph,
in: Proc. of ICDE, IEEE, 2014, pp. 568–579.

[31] J. Ugander, L. Backstrom, Balanced label propagation for partitioning
massive graphs, in: Proc. of WSDM, ACM, 2013, pp. 507–516.

[32] F. Rahimian, A.H. Payberah, S. Girdzijauskas, M. Jelasity, S. Haridi, Ja-be-ja:
a distributed algorithm for balanced graph partitioning, in: Proc. of SASO,
IEEE, 2013, pp. 51–60.

[33] G.M. Slota, K. Madduri, S. Rajamanickam, Pulp: scalable multi-objective
multi-constraint partitioning for small-world networks, in: Proc. of Big
Data, IEEE, 2014, pp. 481–490.

[34] G.M. Slota, K. Madduri, S. Rajamanickam, Complex network partitioning
using label propagation, SIAM J. Sci. Comput. 38 (5) (2016) S620–S645.

[35] G.M. Slota, S. Rajamanickam, K. Devine, K. Madduri, Partitioning
trillion-edge graphs in minutes, in: Proc. of IPDPS, IEEE, 2017, pp. 646–655.

[36] X. Liu, Y. Zhou, X. Guan, C. Shen, A feasible graph partition framework for
parallel computing of big graph, Knowl.-Based Syst. 134 (2017) 228–239.

[37] K.-k. Hu, G.-s. Zeng, H.-w. Jiang, W. Wang, Partitioning big graph with
respect to arbitrary proportions in a streaming manner, Future Gener.
Comput. Syst. (2017) Available online.

[38] Z. Shi, J. Li, P. Guo, S. Li, D. Feng, Y. Su, Partitioning dynamic graph
asynchronously with distributed fennel, Future Gener. Comput. Syst. 71
(2017) 32–42.

[39] J.E. Gonzalez, Y. Low, H. Gu, D. Bickson, C. Guestrin, Powergraph: dis-
tributed graph-parallel computation on natural graphs, in: Proc. of OSDI,
vol. 12, 2012, p. 2.

[40] R. Chen, J. Shi, Y. Chen, H. Chen, Powerlyra: differentiated graph computa-
tion and partitioning on skewed graphs, in: Proc. of EuroSys, ACM, 2015,
p. 1.

[41] F. Petroni, L. Querzoni, K. Daudjee, S. Kamali, G. Iacoboni, Hdrf: stream-
based partitioning for power-law graphs, in: Proc. of CIKM, ACM, 2015,
pp. 243–252.

[42] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, P. Kalnis, Mizan:
a system for dynamic load balancing in large-scale graph processing, in:
Proc. of EuroSys, ACM, 2013, pp. 169–182.

[43] Z. Shang, J.X. Yu, Catch the wind: graph workload balancing on cloud, in:
Proc. of ICDE, IEEE, 2013, pp. 553–564.

[44] U.V. Catalyurek, C. Aykanat, Hypergraph-partitioning-based decomposition
for parallel sparse-matrix vector multiplication, IEEE Trans. Parallel Distrib.
Syst. 10 (7) (1999) 673–693.

[45] D. Mehmet, K. Kamer, U. Bora, V.Ç. Ümit, Hypergraph partitioning for
multiple communication cost metrics: model and methods, J. Parallel
Distrib. Comput. 77 (2015) 69–83.

[46] T. Aleksandar, J.K. William, Parallel multilevel algorithms for hypergraph
partitioning, J. Parallel Distrib. Comput. 68 (5) (2008) 563–581.

[47] D.D. Karen, G.B. Erik, T.H. Robert, H.B. Rob, V.Ç. Ümit, Parallel hypergraph
partitioning for scientific computing, in: Proc. of IPDPS, IEEE, 2006.

[48] I. Kabiljo, B. Karrer, M. Pundir, S. Pupyrev, A. Shalita, A. Presta, Y.
Akhremtsev, Social hash partitioner: a scalable distributed hypergraph
partitioner, Proc. of the VLDB Endowment 10 (11) (2017) 1418–1429.

[49] A. Dan, J. Iglesias, M. Vojnovic, Streaming min-max hypergraph
partitioning, in: Proc. of NIPS, 2015, pp. 1900–1908.

Ning Wang received her Ph.D. degree in computer
software and theory from Northeastern University at
China, in 2017. She is currently a lecturer at Ocean
University of China. Her current research interest lies
in data privacy protection and big data analytics.

Zhigang Wang received the Ph.D. degree in computer
software and theory from Northeastern University,
China, in 2018. He is currently a lecturer at Ocean
University of China. He has been a visiting PhD student
in University of Massachusetts Amherst during Decem-
ber 2014 to December 2016. His research interests
include cloud computing, distributed graph processing
and machine learning.

Yu Gu received the Ph.D. degree in computer software
and theory from Northeastern University, China, in
2010. Currently, he is a professor and the PhD su-
pervisor at Northeastern University, China. His current
research interests include big data analysis, spatial
data management and graph data management. He is
a senior member of the China Computer Federation
(CCF).

Yubin Bao received the Ph.D. degree in computer soft-
ware and theory from Northeastern University, China,
in 2003. Currently, he is a professor at Northeastern
University, China. His current research interests include
data warehouse and OLAP, graph data management,
and cloud computing. He is a senior member of the
China Computer Federation (CCF).

Ge Yu received the Ph.D. degree in computer sci-
ence from Kyushu University of Japan, in 1996. He
is currently a professor and the PhD supervisor at
Northeastern University of China. His research interests
include distributed and parallel database, OLAP and
data warehousing, data integration, graph data man-
agement, etc. He is a member of the IEEE Computer
Society, IEEE, ACM, and a Fellow of the China Computer
Federation (CCF).

http://refhub.elsevier.com/S0167-739X(17)32772-3/sb20
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb20
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb20
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb21
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb21
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb21
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb21
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb21
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb22
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb22
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb22
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb23
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb23
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb23
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb24
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb24
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb24
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb25
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb25
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb25
http://spark.apache.org/
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb27
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb27
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb27
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb27
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb27
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb27
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb27
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb28
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb28
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb28
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb29
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb29
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb29
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb30
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb30
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb30
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb31
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb31
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb31
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb32
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb32
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb32
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb32
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb32
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb33
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb33
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb33
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb33
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb33
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb34
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb34
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb34
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb35
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb35
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb35
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb36
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb36
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb36
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb37
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb37
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb37
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb37
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb37
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb38
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb38
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb38
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb38
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb38
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb40
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb40
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb40
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb40
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb40
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb41
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb41
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb41
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb41
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb41
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb42
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb42
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb42
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb42
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb42
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb43
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb43
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb43
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb44
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb44
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb44
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb44
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb44
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb45
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb45
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb45
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb45
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb45
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb46
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb46
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb46
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb47
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb47
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb47
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb48
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb48
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb48
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb48
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb48
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb49
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb49
http://refhub.elsevier.com/S0167-739X(17)32772-3/sb49

	TSH: Easy-to-be distributed partitioning for large-scale graphs
	Introduction
	Problem definition
	Iterative graph computation on Pregel-like systems
	K-way graph partitioning for Pregel-like systems

	Locality of real-world graphs
	Theoretical analysis
	Evaluation

	Target-vertex sensitive hash partitioning
	Heuristic rule
	Distributed implementation
	Logical pre-partitioning
	Physical partitioning

	Performance studies
	Partitioning quality
	Partitioning efficiency
	Determining the batch size threshold of TSH
	Scalability
	Comparison over random graphs
	Comparison against non-streaming partitioning methods
	Locality of partitioned sub-graphs

	Related work
	Pregel-like distributed graph computation systems
	Partitioning algorithms

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

