
A Fault-Tolerant Framework for Asynchronous
Iterative Computations in Cloud Environments

Zhigang Wang , Lixin Gao, Fellow, IEEE, Yu Gu , Yubin Bao, and Ge Yu,Member, IEEE

Abstract—Most graph algorithms are iterative in nature. They can be processed by distributed systems in memory in an efficient

asynchronous manner. However, it is challenging to recover from failures in such systems. This is because traditional checkpoint

fault-tolerant frameworks incur expensive barrier costs that usually offset the gains brought by asynchronous computations. Worse,

surviving data are rolled back, leading to costly re-computations. This paper first proposes to leverage surviving data for failure

recovery in an asynchronous system. Our framework guarantees the correctness of algorithms and avoids rolling back surviving data.

Additionally, a novel asynchronous checkpointing solution is introduced to accelerate recovery at the price of nearly zero overheads.

Some optimization strategies like message pruning, non-blocking recovery and load balancing are also designed to further boost the

performance. We have conducted extensive experiments to show the effectiveness of our proposals using real-world graphs.

Index Terms—Fault-tolerance, asynchronous model, iterative graph algorithm, distributed memory-based systems

Ç

1 INTRODUCTION

ITERATIVE graph algorithms have been widely used in
numerous applications with billion-vertex graphs. To effi-

ciently handle large graphs, many distributed systems have
been developed [1], [2], [3], [4], [5], [6], most of which focus
on memory-based computations, such as Pregel, Spark and
GraphLab. Distributed systems run on a cluster consisting
of a large number of commodity machines (also called
“nodes” in this paper). When processing iterative graph
algorithms, node failures may occur very frequently. There-
fore, fault-tolerance is particularly important.

For simplicity, existing systems usually employ a syn-
chronous model for graph computations through a series of
iterations which are separated by explicit global barriers.
Within one iteration, computational nodes coordinate with
each other to synchronize the progress. Nodes running
faster thereby block themselves to wait for stragglers,
increasing synchronization overheads. Recently, asynchro-
nous systems like GraphLab [4] and Maiter [5], have been
proposed to eliminate the synchronization overheads by
removing barriers. In particular, GraphLab can run most
graph algorithms. However, its distributed lock contention

for general purpose incurs expensive costs which can
completely offset the gain achieved by asynchronous com-
putations [7]. Different from GraphLab, Maiter is a light-
weight asynchronous system with support for a limited set
of important and often used algorithms, such as PageRank
and Shortest Path. The issue we investigate in this paper is
then to find an efficient fault-tolerant solution tailored for
the asynchronous model described in Maiter.

Challenges: Although many efforts have been devoted
into fault-tolerance, most of them focus on synchronous
engines, such as checkpointing [1] used in many Pregel-like
systems, and lineage [8] employed by Spark. Both are far
from ideal for asynchronous engines. First, the checkpoint-
ing solution archives data periodically and then any failure
can be recovered from the most recent checkpoint. How-
ever, archiving data requires an explicit barrier to coordi-
nate the progress where underlying computations must be
suspended. That exposes asynchronous engines to the same
inefficiency of synchronous engines that the former are try-
ing to address. On the other hand, the lineage solution
tracks the coarse-grained dependency among data sets
instead of data themselves, in order to save the storage
space and network bandwidth. It, however, lacks built-in
support for fine-grained updates in asynchronous systems.
Note that researchers have designed an asynchronous
checkpointing solution based on the Chandy-Lamport tech-
nique [9] for GraphLab. However, both surviving vertices
and lost vertices are rolled back. The re-computation over-
head is so large that this functionality is no longer offered.

Our Contributions: This paper first proposes a new failure
recovery solution without rolling back, termed FR-WORB.
Upon failures, FR-WORB automatically constructs a special
restarting point where computations interrupted by failures
can be continued. We can prove that the correctness is inde-
pendent of vertex states provided for the restarting point,
i.e., the continued computations always converge to the

� Z. Wang, Y. Gu, and Y. Bao are with the School of Computer Science and
Engineering, Northeastern University, Shenyang, Liaoning 110819, China.
E-mail: wangzhiganglab@gmail.com, {guyu, baoyubin}@mail.neu.edu.cn.

� G. Yu is with the School of Computer Science and Engineering, Northeast-
ern University, Shenyang, Liaoning 110819, China, and also with the Col-
lege of Information, Liaoning University, Shenyang, Liaoning 110036,
China. E-mail: yuge@mail.neu.edu.cn.

� L. Gao is with the Department of Electrical and Computer Engineering,
University of Massachusetts Amherst, Amherst, MA 01003.
E-mail: lgao@ecs.umass.edu.

Manuscript received 5 Sept. 2017; revised 1 Feb. 2018; accepted 16 Feb. 2018.
Date of publication 22 Feb. 2018; date of current version 13 July 2018.
(Corresponding author: Ge Yu.)
Recommended for acceptance by X. Gu.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2018.2808519

1678 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 8, AUGUST 2018

1045-9219� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9582-1191
https://orcid.org/0000-0001-9582-1191
https://orcid.org/0000-0001-9582-1191
https://orcid.org/0000-0001-9582-1191
https://orcid.org/0000-0001-9582-1191
https://orcid.org/0000-0001-7422-6254
https://orcid.org/0000-0001-7422-6254
https://orcid.org/0000-0001-7422-6254
https://orcid.org/0000-0001-7422-6254
https://orcid.org/0000-0001-7422-6254
mailto:
mailto:
mailto:
mailto:

same point as if no failure has happened. Then FR-WORB
can preserve vertex states on surviving nodes without
rolling back. Further, it leverages surviving vertices to
potentially accelerate the recovery of lost data, while simul-
taneously keeping refining surviving vertices. Intrinsically,
FR-WORB is a reactive approach because no checkpoint is
written before failures. We are aware of some recently pub-
lished reactive approaches [10], [11], [12], [13]. However,
they either consume a large amount of memory due to data
replications, or raise nontrivial challenges when designing
the recovery function.

Second, we design a variant of FR-WORB with an asyn-
chronous checkpointing technique, referred to as FR-WAC,
where lost data can be recomputed from the last checkpoint
instead of scratch. It reduces the number of re-computations
and then improves the recovery efficiency. In particular, the
independence between correctness and vertex states pro-
vided for the restarting point, enables us to separate archiv-
ing operations from underlying computations. Then, neither
the barrier among nodes nor the coordination between ver-
tex persistence and updates on one node is required. The
overhead of checkpointing is thereby nearly zero.

Finally, we design three important optimization strategies
for FR-WORB and FR-WAC. (1) Message pruning. For cor-
rectness, both FR-WORB and FR-WAC broadcast messages
to purge surviving vertex states of contributions from failed
vertices, because later compensationmessages will be propa-
gated again. To support this, the underlying vertex update
operation must be reversible. Our pruning technique can
reduce the number of purge and compensation messages by
controlling the communication behaviors. Also, it removes
the reversibility requirement. (2) Non-blocking recovery. Till
now, we assume that replacements of failed nodes can be
immediately used upon failures. However, this is not always
feasible because users may not want to pay for such standby
nodes in the failure-free execution. In the absence of standby
nodes, we design a non-blocking strategy so that surviving
nodes can continue computations instead of waiting for
acquiring new resources. (3) In contrast, if there are sufficient
standby nodes, we can assign recovery workloads to multi-
ple nodes for load balancing. A new data re-assignment pol-
icy is given to efficiently route messages after the vertex-
assignment is changed.

This paper extends a preliminary work [14] in the follow-
ing aspects. First, we analyze the communication behaviors
of FR-WORB and FR-WAC in detail, and then propose a
simple yet efficient message pruning strategy to further
boost the recovery efficiency. Second, we consider the sce-
nario without standby nodes and then design a new mecha-
nism to provide non-blocking fault-tolerance service. We
also devote some engineering efforts towards high-avail-
ability, i.e., writing checkpoint data onto the distributed file
system HDFS, rather than local disk.

Paper Organization: The remainder of this paper is orga-
nized as follows. Section 2 introduces preliminaries about
asynchronous computations and the challenges of tolerating
failures. Section 3 presents our fault-tolerance methods and
proves the correctness. Section 4 proposes some optimiza-
tions for fast recovery. Section 5 reports experimental stud-
ies. Section 6 highlights the related work. Finally, we
conclude this work in Section 7.

2 PRELIMINARIES

Among asynchronous systems, Maiter [5] is a lightweight
engine and can support many important yet often used
graph algorithms. In the following, we briefly review its
asynchronous model, followed by discussions of the chal-
lenges of tolerating failures and example algorithms sup-
ported by our recovery solutions.

2.1 Maiter: An Asynchronous Memory-Based
System

Wemodel a graph as a directed graph G = (V;E), where V is
a set of vertices and E is a set of edges. Given an edge (i; j),
i/j is the source/target vertex. The set of in/out-neighbors
of i is denoted by Gin

i /G
out
i . G is partitioned onto multiple

computational nodes as different partitions to be processed
in parallel.

Iterative algorithms can be naturally implemented in a
synchronous system through a sequence of iterations sepa-
rated by explicit barriers. The workloads at the (kþ 1)th
iteration consist of computing state vkþ1j for any vertex j 2 V
by consuming messages received at the kth iteration, and
sending new messages based on vkþ1j . Eq. (1) shows it math-
ematically, where cj is an algorithm-specified constant. gfi;jg
and � are user-defined functions to generate a message
from i to j based on vi and compute vertex states, respec-
tively. Iterations terminate until a fixed point is reached, i.e.,
vj does not change between two consecutive iterations.

vkþ1j ¼ cj �
X
i2Gin

j

�gfi;jgðvki Þ (1)

Taking PageRank [15] (PR) as an example, it computes a
score, i.e., vj, for every web page j to evaluate j’s importance.
At the kth iteration, every page i sends its tentative
score divided by its out-degree along outgoing links,

i.e., gfi;jgðvki Þ ¼ d � vk
i

jGout
i
j, where d is a user-defined decay

factor and 0 < d < 1. At the next iteration, a new score
is computed by summing up received values, i.e.,

vkþ1j ¼ 1�d
jV j þ

P
i2Gin

j
ðd � vk

i

jGouti j
Þ. Here, ‘�’ is ‘+’ and cj ¼ 1�d

jV j for
j. Theoretically, when the summation over all scores is 1, the
fixed point is reached. In practice, we usually terminate itera-
tions in advancewhen the summation is close enough to 1.

Maiter [5], on the other hand, employs a delta-based
asynchronous model. Messages in Maiter are generated
based on the “change” of vi (delta), to avoid repeatedly
processing messages from unchanged vi. Also, synchroniza-
tion barriers are completely removed to eliminate blocking
overheads.

Specifically, when gfi;jgðxÞ has the distributed property
over ‘�’, and ‘�’ has the communicative and associate proper-
ties, iterative computations can be performed as follows.
For vertex j on node NðjÞwhere j resides, it carries two val-
ues: vj and Dvj, where Dvj indicates the “change” of vj since
vj’s last update. Dvj is computed by accumulating delta-
based messages gfi;jgðDviÞ from in-neighbors in the � man-
ner, as shown in Eq. (2). At anytime, as shown in Eq. (3), j
is possibly scheduled to update its vj by consuming Dvj. Dvj
is further forwarded to out-neighbors and then reset to
0 to accumulate newly received messages. 0 is an abstract

WANG ETAL.: A FAULT-TOLERANT FRAMEWORK FOR ASYNCHRONOUS ITERATIVE COMPUTATIONS IN CLOUD ENVIRONMENTS 1679

zero value satisfying that x� 0 ¼ x and gfi;jgð0Þ ¼ 0. For
PR, it is 0.

receive :
When receiving gfi;jgðDviÞ from NðiÞ;
Dvj Dvj � gfi;jgðDviÞ; i 2 Gin

j ;

�
(2)

update :

If Dvj 6¼ 0
vj vj � Dvj;
8h 2 Gout

j ; If gfj;hgðDvjÞ 6¼ 0
send gfj;hgðDvjÞ to NðhÞ;
Dvj 0;

8>>>><
>>>>:

(3)

gfi;jgðDviÞ is always closer to 0 than Dvi. Thus, after per-
forming Eqs. (2) and (3), asynchronous computations con-
verge when every Dvj ¼ 0. In particular, the initial input
values of vj andDvj are given as v0j = 0 andDv0j = cj, to guaran-
tee that an algorithm can converge to the same fixed point as
achieved in the synchronous model. Besides, it has been vali-
dated that prioritizing the update order of vertices can acceler-
ate the convergence speed [16], because vertices with large
“change” (i.e.,Dvj) play an important role in determining vj.

2.2 Challenges of Fault-Tolerance

Maiter employs a widely used Master-Slave framework
design where a master node is in charge of monitoring the
cluster health by periodically checking the status informa-
tion collected from slave nodes. Although Master, Network
and Slaves may fail, this paper focuses on the last two only
because the whole system will crash when Master fails.

It is challenging to recover failures because the memory-
resident data on failed nodes are immediately lost upon fail-
ures. To recover them and continue computations, a conven-
tional approach is to archive data periodically beforehand
and roll back vertex states to the last available checkpoint [1],
[4], [17], [18], [19]. However, existing checkpoint-based
methods suffer from expensive archiving overheads and/or
costly rolling back operations.

2.3 Example Algorithms

Table 1 lists a series of well-known graph algorithms that
can be supported by our fault-tolerance solutions. Here, �
and ffjgðxÞ are operators required to tolerate failures. We
will introduce them in Sections 3 and 4, respectively. Since
PR has been given as an example in Section 2.1, we now
describe other algorithms.

Penalized Hitting Probability (PHP) [20]: PHP is used to
measure the proximity (similarity) between a given source
vertex s and any other vertex j. As a random walk based
algorithm, a walker at vertex i moves to i’s out-neighbor j
with a probability proportional to an edge weight wði; jÞ.
The sum of transition probabilities indicates the proximity.
In particular, s as the query vertex has a constant proximity
value 1. Both PR and PHP use a decay factor d (0 < d < 1)
when computing messages. Without loss of generality, we
set d ¼ 0:8 in this paper.

Katz Metric (Katz) [21]: Katz is another proximity mea-
sure. The score value is computed as the sum over the collec-
tion of paths between a given source s and any other vertex j.

Single Source Shortest Path (SSSP) [1]: SSSP finds the
shortest distance between a given source to any other one.
Initially, the source has the shortest distance 0 as its value
which is broadcasted to out-neighbors. In remaining com-
putations, a vertex minimizes its distance based on the val-
ues of in-neighbors.

Connected Components (CC) [22]: CC finds all connected
components in an undirected graph. The component id of
each vertex is initialized by its own unique vertex id. Then a
vertex maximizes its component id based on the values of
its direct neighbors.

3 FAST FAILURE RECOVERY

This section introduces two failure recovery methods for the
delta-based asynchronous model. In particular, we prove
correctness and give performance analysis.

3.1 Failure Recovery Methods

Upon any failure at time tf , the master node immediately
replaces failed nodes with standby ones and then notifies
replacements to reload the lost partition. Afterwards, one of
our recovery methods (Sections 3.1.1 and 3.1.2) is invoked
to restart computations.

3.1.1 Failure Recovery without Rolling Back

In the scenario where no checkpoint is archived, a tradi-
tional way of tolerating failures is to recompute from
scratch (v0j ¼ 0, Dv0j ¼ cj), that is referred to as FR-Scratch.
FR-Scratch is inefficient because workloads on surviving
nodes are discarded, and re-performing them wastes
resources. By contrast, we present a failure recovery method
called FR-WORB where only lost vertices on failed nodes
are recomputed from scratch while updates of surviving
vertices can keep going without rollback.

Compared with FR-Scratch, FR-WORB avoids recom-
puting surviving vertex states. However, because surviving
vertex states are not rolled back to 0, a key issue is how
to guarantee the correctness, i.e., an algorithm under
FR-WORB can converge to the same fixed point as reached
under FR-Scratch. We solve this problem by designing a
special restarting point. The basic idea behind it is to utilize
available data as much as possible. We denote by ~vj and D~vj
the state value and delta value in FR-WORB, respectively,
to distinguish them from ones before failures. In the restart-
ing point, for ~v0j , it equals to vfj if j resides on a surviving
node, where vfj is the state value of j at tf . Otherwise, it is 0.
Let VN stand for a set of vertices residing on node N . Eq. (4)

TABLE 1
Example Graph Algorithms

Alg. cj gfi;jgðxÞ ffjgðxÞ � � 0

PR (1� d) d � x
jGoutðjÞj x > 0 þ � 0

PHP
1 (j ¼ s)

or
0 (j 6¼ s)

d�x � wði; jÞ
(j 6¼ s)

or 0 (j ¼ s)

00 00 00 00

Katz 00 d � x 00 00 00 00

SSSP
0 (j ¼ s)

or
1 (j 6¼ s)

wði; jÞ þ x
(x < vi)

or1 (x�vi)
x < vi min x� y ¼ x 1

CC j x (x > vi)
or �1 (x�vi)

x > vi max x� y ¼ x �1

1680 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 8, AUGUST 2018

shows that mathematically, where NF and NS represent the
set of failed nodes and the set of surviving nodes, respec-
tively. On the other hand, D~v0j in the restarting point is given
by (~v1j � ~v0j). Here, � is an abstract operation satisfying that
gfi;jgðxÞ has the distributed property over ‘�’, x� x = 0, and
ðx� yÞ � z ¼ x� ðy� zÞ. For PR, � is ‘-’. ~v1j is derived from
its newly initialized in-neighbor state ~v0i using the synchro-
nous model (Eq. (1)). Eq. (5) gives a mathematical descrip-
tion about constructing D~v0j . Once every D~v0j is ready, we
can take (~v0j , D~v

0
j) as input to resume computations.

~v0j ¼
0; j 2 S N2NF

VN

vfj ; j 2
S

N2NS
VN

(
(4)

D~v0j ¼ ~v1j � ~v0j ¼

cj �

� X
i2Gin

j

�gfi;jgð~v0i Þ
�!
� ~v0j (5)

In the context of asynchronous computations, flushing
operations are required to correctly run a synchronous itera-
tion to compute ~v1j . That is, as a preprocessing phase before
building the restarting point, at tf , gfi;jgðDviÞ in network and
Dvj on surviving nodes must be flushed. This is because
gfi;jgð~v0i Þ in Eq. (5) is different from gfi;jgðDviÞ in Eq. (2).
The two types of messages must be separated to correctly
compute ~v1j . Also, the current Dvj on surviving nodes per-
haps stores the value based on gfi;jgðDviÞ. It needs to be
cleared, i.e., being reset to 0, in order to accumulate the
newly received message gfi;jgð~v0i Þ.

Flushing gfi;jgðDviÞ needs a three-step operation. First,
computing threads are suspended to stop generating new
messages. Second, at each sender side, messages in the
sending buffer are flushed and then an EOF notification is
broadcasted to all nodes subsequently. Third, each receiver
side blocks itself until it has received all EOF notifications
from sender sides or the waiting time exceeds a given
threshold. After flushing gfi;jgðDviÞ, Dvj is reset to 0 locally
to clear its value. In particular, when calculating ~v1j , flushing
gfi;jgð~v0i Þ is also required to guarantee that each vertex has
received all possible messages from in-neighbors.

Note that before the preprocessing phase, many regular
messages gfi;jgðDviÞ from failed nodes have already been
received and accumulated into the vertex state vj on surviv-
ing nodes. “Changes” indicated by such messages will be
propagated again by the replacements of failed nodes.
Clearly, accumulating these “changes” twice may affect cor-
rectness. For example, in PR, the summation over all scores
will be greater than 1. Flushing on-going messages and
resetting the message-receiving variable Dvj cannot work
on the vertex state vj. However, the newly constructed delta
value D~v0j in our restarting point can eliminate the impact
on correctness. Intrinsically, D~v0j given by Eq. (5) indicates
the opposite number of the accumulated value (diff) of mes-
sages which are sent out by failed nodes and have already
been processed by surviving nodes. When resuming com-
putations, D~v0j as input is accumulated into the surviving vj.
The latter then immediately removes diff from itself to avoid
repeatedly accumulating it. However, values of messages
among surviving nodes are preserved without rollback.
This is the key factor that our solution can guarantee cor-
rectness. Theorem 1 in Section 3.2.1 will give a formal proof.

3.1.2 Failure Recovery with Asynchronous

Checkpointing

In FR-WORB, no checkpoint is archived during computa-
tions. As a result, the only way of initializing lost states is to
reset them to the initial value 0. The heavy recovery work-
loads impact the performance, even though surviving verti-
ces are leveraged.

Now we introduce an improved method to further boost
the recovery efficiency by archiving data during the failure-
free execution. It is inspired by checkpointing. In general,
the checkpointing method archives state vj as checkpoint
periodically. Upon failures, all nodes load the lost partition
and then resume computations from the last available
checkpoint, instead of scratch. The recovery workloads are
thereby reduced. However, existing techniques need to
block updating vj when archiving it. This requires a syn-
chronization barrier to coordinate the progress of each
node, which largely degrades the performance of the failure-
free execution. Unlike them, our method asynchronously
archives vj, termed FR-WAC. It avoids recovering lost data
from scratch. Meanwhile the impact of archiving data on
performance can be negligible.

In FR-WAC, each node individually archives its local ver-
tex state value vj based on a user-specified interval t. There is
no global synchronization barrier [1] or any other protocol [4]
to coordinate the progress. Hence, FR-WAC can quickly per-
form a complete checkpoint. Furthermore, on one node, a sep-
arate thread is launched to accomplish the archiving
operation. It runs in fully parallel with the message-receiving
(Eq. (2)) and vertex-updating (Eq. (3)) threads. Then the
underlying computation is performed progressively without
pausing. Upon failures, FR-WAC initializes lost vertex states
using checkpoint data, i.e., ~v0j ¼ vxj , if j 2 [N2NF

VN . Here, vxj is
kept in themost recent checkpoint archived at tx, and tx � tf .

In synchronous checkpointing solutions, t is a key
parameter to balance the tradeoff between the recovery effi-
ciency and the archiving costs. It is a non-trivial task to set a
reasonable value. However, we will experimentally show
that a quite large range of t can allow FR-WAC to strike a
good balance.

3.2 Recovery Analysis

3.2.1 Correctness

Nowwe prove the correctness of our method in Theorem 1.

Theorem 1. An algorithm using FR-WORB can converge to the
same fixed point as that using FR-Scratch.

Proof. The difference between FR-WORB and FR-Scratch
can be reduced to the different restarting points, i.e., (~v0j ,
D~v0j) and (0, cj), respectively. Let ~v

1
j be the state value of

vertex j in the fixed point. Then we can prove this theo-
rem if ~v1j computed by (~v0j , D~v

0
j) is the same with that by

(0, cj). Below, we first derive ~v1j based on (~v0j , D~v
0
j).

We first analyze the state value of j at time tk, ~v
k
j . As

shown in Eqs. (2) and (3), delta-based messages are
transferred from one vertex to another along the edge
between them, and are used to update vertex states.
The received messages are forwarded again to propa-
gate information. Thus, at tk, ~vkj has received some
D~v0-based messages, where every D~v0 is originally

WANG ETAL.: A FAULT-TOLERANT FRAMEWORK FOR ASYNCHRONOUS ITERATIVE COMPUTATIONS IN CLOUD ENVIRONMENTS 1681

provided by one of j’s direct or indirect neighbors. To
demonstrate this process mathematically, we introduce
“path”. A path p is a sequence of vertices where a mes-
sage is transferred. Vertices in p are sorted in an ascend-
ing order of the message-receiving times. There exists
an edge between any two adjacent vertices in p. Fig. 1
shows two paths p1 ¼ fi0; i1; . . . ; ix; . . . ; ik�1; ik ¼ jg and
p2 ¼ fm; ik�1; ik ¼ jg from different sources i0 and m to
the same target ik ¼ j. Taking p1 as an example, a mes-
sage gðD~v0i0Þ is sent from i0 at time ti0 and then for-
warded along i1; i2; . . ., to ik ¼ j by recursively applying
g, at times ti1 ; ti2 ; . . ., and tik ¼ tk. Here ti0 < ti1 < . . .
< tk. Similarly, for p2, we have t

0
m < t

0
ik�1 < tk. At time

tk, p1 is available for j if j has received the message orig-
inating from i0. The number of a path p’s hops equals to
(jpj � 1). Then we can use P ðj; lÞ to stand for a set of
l-hop available paths to j. Based on Eqs. (2) and (3),
8p 2 P ðj; lÞ, the message value transferred from i0 to j
along p can be computed by recursively applying the
message generating function gfix;ixþ1g:

Y
p

ðD~v0i0Þ ¼
Yl�1

ix;ixþ12p
and x¼0

gfix;ixþ1gðD~v0i0Þ

¼ gfil�1;jg
�
:::gfi1;i2g

�
gfi0;i1gðD~v0i0Þ

��
At tk, the maximum value of l is k according to the defini-
tion of p. Besides, at t0, j accumulates the initial input D~v0j
into its ~v0j . Together, we have the expression of ~vkj in Eq. (6).

~vkj ¼ ~v0j � D~v0j �
Xk
l¼1
�

X
p2P ðj;lÞ

�
Y
p

ðD~v0i0Þ
 !0

@
1
A (6)

Further, to guarantee that all messages have been
received at the fixed point, a vertex i0 must perform
Eqs. (2) and (3) an infinite number of times until its D~v1i0
is 0. We thereby derive ~v1j by considering all possible
paths with hops from 0 to1, as described in Eq. (7).

~v1j ¼ ~v0j � D~v0j �
X1
l¼1
�

X
p2P ðj;lÞ

�
Y
p

ðD~v0i0Þ
 !0

@
1
A (7)

We then explore the relationship between ~v1j and (~v0j ,
D~v0j). Based on Eq. (5), the expression for D~v0i0 is

D~v0i0 ¼ ~v1i0 � ~v0i0 ¼
X
n2Gini0

�gfn;i0gð~v0nÞ

0
B@

1
CA� ~v0i0 � ci0

Comparedwith FR-Scratch (~v0i0 ¼ 0,D~v0i0 ¼ ci0), the differ-
ence in inputs is caused by the values of ~v0n and ~v0i0 . In the

following, we will show that the difference can always be
eliminated bymessages along some pairs of paths (p; p0).

� Path p: gfi;jg has the distributed property over ‘�’
and ‘�’, and the latter two operations have the
communicativeand the associate properties. Given
an l-hop path p ¼ fi0; i1; :::; il ¼ jg, we can substi-
tute the expression for D~v0i0 to expand

Q
pðD~v0i0Þ as

Y
p

ðD~v0i0Þ ¼
 X

n2Gini0

�
�Y

p

�
gfn;i0gð~v0nÞ

��!

�
Y
p

ðci0Þ �
Y
p

ð~v0i0Þ:
(8)

� Path p0: Then 8n 2 Gin
i0
, an (l+1)-hop path p0 can be

formed by adding the in-neighbor n, i.e.,
p0 ¼ fng [p. Like p, we have

Y
p0
ðD~v0nÞ ¼

 X
m2Ginn

�
�Y

p0

�
gfm;ngð~v0mÞ

��!

�
Y
p0
ðcnÞ �

Y
p0
ð~v0nÞ

(9)

Note that
Q

p

�
gfn;i0gð~v0nÞ

�
in Eq. (8) equals

Q
p0 ð~v0nÞ in

Eq. (9). Besides, the two messages
Q

pðD~v0i0Þ and
Q

p0 ðD~v0nÞ
corresponding to (p; p0) are definitely accumulated into
~v1j , as shown in Eq. (7). Because of the reversibility prop-
erty of ‘�’ and ‘�’, the itemQ

pð~v0i0Þ is immediately elimi-
nated. Further, when values along all (lþ 1)-hop paths
starting from i0’s in-neighbors have been received,P

n2Gin
i0

�ðQp

�
gfn;i0gð~v0nÞ

�Þ can be removed. As a result,

after accumulating values transferred along all paths to j,

including ~v0j andD~v0j , we can infer ~v1j as shown in Eq. (10).

~v1j ¼ cj �
X1
l¼1
�

X
p2P ðj;lÞ

�
Y
p

ðciÞ
 !0

@
1
A

0
@

1
A

�
X

p0ðnÞ2P ðj;1Þ
�

Y
p0ðnÞ

X
n2Gini

�gfn;igð~v0nÞ
0
@

1
A

0
@

1
A

0
@

1
A

(10)

Here, p0ðnÞ ¼ fn; i; :::; jg. Since gfi;jgðxÞ is always closer to

0 than x,
Q

p0ðxÞ2P ðj;1ÞðxÞ ! 0. Hence, ~v1j only depends

on cx (x 2 V) which is the same as that in FR-Scratch.

Then we have the claim. tu
Weuse a graphwith five vertices fi0; i1; i2; i3; i4g to demon-

strate the correctness guarantee of PR. Let d ¼ 0:8. As shown
in Fig. 2, the initial input at t0 is ðv0 ¼ 0;Dv0 ¼ c ¼ 1�d

jV j ¼ 0:04Þ.
At time tk, for example, i2 has accumulated the message val-
ues along two paths p1 (0:04	 0:8	 0:8 ¼ 0:0256) and p2
(0:04	 0:8 ¼ 0:032), and its local Dv0i2 ¼ 0:04. Now assume
that a failure happens and then vi2 is lost. Using FR-WORB, it
is re-initialized by ~v0i2 ¼ 0 at time ~t0, and other vertex states
keep invariant. After running a synchronous iteration, at ~t1,
we can re-construct D~v0 by ð~v1 � ~v0Þ. Taking i2 as an example,
D~v0i2 ¼ d � ~v0i1 � ~v0i2 þ c. “�~v0i2” can be immediately eliminated
when D~v0i2 is accumulated into ~v0i2 . Therefore, the difference

between D~v0i2 and the initial input Dv0i2 ¼ c is ðd � ~v0i1Þ.

Fig. 1. Illustration of two paths from different sources to ik ¼ j.

1682 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 8, AUGUST 2018

That can be eliminated after i2 receives the message from its

in-neighbor i1 along p2, i.e., d � D~v0i1 ¼ d
�
d � ~v0i0 � ~v0i1 þ c

�
. Sim-

ilarly, d2 � ~v0i0 can be removed once the message from i0 along

p1 is available. Clearly, like FR-Scratch, the algorithm conver-

gence depends on c only.
The only difference between FR-WORB and FR-WAC is

the value of ~v0n for every failed vertex. Since ~v1j is indepen-
dent of ~v0n, we can easily infer that algorithms under
FR-WAC also converge.

3.2.2 Performance Analysis

Asynchronous models have removed barriers so as to allow
vertices to freely update themselves. Then vertex update
behaviors are not deterministic. When restarting computa-
tions, the vertex update sequence is not exactly the same as
before failures. Therefore, it is difficult to compare the per-
formance of different fault-tolerance solutions with a strict
theoretical analysis. However, taking PR as an example, we
can analyze the advantages of our methods.

We first compare FR-WORB against FR-Scratch. Both of
them recompute lost states from scratch, i.e., ~v0j ¼ 0 ¼ 0.
However, their input delta values are very different. That is,
D~v0j equals c for FR-Scratch, while

�
cþ d

P
i2Gin

j
ð~v0i =jGout

i jÞ
�

for FR-WORB based on Eq. (5). For j, if at least one in-
neighbor (e.g., i) resides on a surviving node, then we have
~v0i > 0 for FR-WORB. Therefore, D~v0j used in FR-WORB is
greater than or at least equal to that in FR-Scratch. The goal
of PR is continuously accumulating D~vj into ~v0j so that the
latter can converge to ~v1j . Clearly, a large initial D~v0j used in
FR-WORB can potentially speed up the convergence.

By contrast, FR-WAC provides a non-negative ~v0j for j on
failed nodes. Then D~v0j ¼

�
cþ d

P
i2Ginj
ð~v0i =jGout

i jÞ
�� ~v0j . How-

ever, once resuming computations, by accumulating D~v0j
into ~v0j , “�~v0j” in D~v0j is immediately eliminated. FR-WAC can
enjoy the same initial delta value as FR-WORB. Further, given
any out-neighbor m of j, based on Eq. (5), its D~v0m is greater
than that used in FR-WORB, because ~v0j � 0. m in FR-WAC
potentially converges faster than that in FR-WORB. If there
exist paths fromm to vertices on failed nodes, then such verti-
ces can also converge faster. As a result, FR-WAC beats
FR-WORB if we ignore the cost of archiving data.

4 OPTIMIZATIONS

This section introduces three optimizations to further boost
the recovery efficiency, including message pruning (Section
4.1), non-blocking recovery (Section 4.2) and load balancing
(Section 4.3).

4.1 Message Pruning

We first point out there exist some messages that can be
pruned after restarting computations upon failures, and
then present our pruning technique in detail.

Analyzing Communication Behaviors: In FR-WORB and
FR-WAC, ~v0j is given by Eq. (4) to preserve vertex states on
surviving nodes. However, some of contributions accumu-
lated into ~v0j come from in-neighbors on failed nodes. We
should purge ~v0j of such contributions because now they are
not available. Towards this end, we need to construct the
new delta value D~v0j carefully. Indeed, D~v0j given by Eq. (5)

logically can be divided into two parts: ðPi2Gin
j
� gfi;jgð~v0i Þ �

~v0j
�
and cj. The former figures out how many contributions

come from failed in-neighbors and then it is propagated for
a through purge. Meanwhile, vertices as in-neighbors will
broadcast cj again, the second part in D~v0j , to compensate
lost contributions. Theorem 1 tells us that the impact of
purge and compensation messages will be definitely offset
at the message-receiving vertex j, as shown in Eqs. (8), (9),
and (10), which guarantees the algorithm convergence. But
before that, the two kinds of messages possibly exist in a
system for quite a while. This is because for both FR-WORB
and FR-WAC, the purge message is immediately broad-
casted once D~v0j is constructed. It will take some time for
compensation messages to catch up with purge messages to
offset the impact of the latter. Processing the two kinds of
messages of course consumes network bandwidth and CPU
resources. Fortunately, as we will show later, some of such
messages can be pruned for efficiency.

Pruning Strategy: The property that purge and compensa-
tion can be offset naturally motives us to keep all purge
messages in their corresponding generation locations to
wait for compensation messages. In this way, the latter can
catch up with the former as soon as possible, but more
importantly, there is no communication cost caused by
purge. Further, before compensation is accomplished, two
special designs are necessary for efficiency and correctness.
First, we do not update the local vertex state ~vj, because the
operation of purging ~vj of lost contributions will be offset
later by compensation. Then we can save CPU time. Second,
all received compensation messages will not be forwarded
since they are used to offset the impact of the local cached
purge message.

Correctness: Theorem 2 establishes the correctness.

Theorem 2. An algorithm under FR-WORB with pruning con-
verges to the same fixed point as that under FR-Scratch.

Proof. Different from FR-WORB, before compensation is
accomplished, the pruning variant blocks all processing
operations on purge and compensation messages, includ-
ing propagation among vertices and consumption
involved in vertex updates. Hence, this theorem can be
proved if, for each vertex j, there exists a time instance
when the impacts of the two kinds of blocked messages
are offset (i.e., compensation is done) and then subse-
quent messages will be processed in the same way as
FR-WORB.

Below, we first mathematically give the lost contribu-
tions for j by analyzing elements in ~v0j and

P
i2Ginj
�

gfi;jgð~v0i Þ. Suppose that j resides on a surviving node
when failures occur at tf . Then at the restarting point,

Fig. 2. Failure recovery of PR.

WANG ETAL.: A FAULT-TOLERANT FRAMEWORK FOR ASYNCHRONOUS ITERATIVE COMPUTATIONS IN CLOUD ENVIRONMENTS 1683

~v0j ¼ vfj based on Eq. (4), where vfj is the state value of j
right before failures. Following Eq. (6) in Theorem 1,
given the initial input (v0j ¼ 0, Dv0j ¼ cj), v

f
j is

vfj ¼ cj �
Xf
l¼1
�

X
p2P ðj;lÞ

�
Y
p

ðci0Þ
 !0

@
1
A

By Eq. (3), we know any message
Q

pðci0Þ in ~v0j or v
f
j is for-

warded by one of j’s direct in-neighbor i, by applying the

function g on i’s received message
Q

p0 ðci0Þ. Here, p is

the path passing through i, i.e., p ¼ fi0; i1; . . . ; il�2;
il�1 ¼ i; il ¼ jg, and p0 ¼ p=fjg. Qp0 ðci0Þ has already been

accumulated into vfi . If i also resides on a surviving node,

then ~v0i ¼ vfi and hence gfi;jgð~v0i Þ contains gfi;jgð
Q

p0 ðci0ÞÞ
which equals

Q
pðci0Þ. As a result,

Q
pðci0Þ is removed

from the result of ðPi2Ginj
� gfi;jgð~v0i Þ � ~v0j Þ. Otherwise,

~v0i ¼ 0. Then
Q

pðci0Þ as the lost contribution from i exists

in the comparison result. We denote by
S

N2NF
VN the

set of vertices on failed nodes, where NF is the set of
failed nodes. Eq. (11) shows the total lost contributions
for a surviving vertex j.

Lost ¼ cj �
Xf
l¼1
�

X
p2P ðj;lÞ
^i2p

�
Y
p

ðci0Þ
 !0

B@
1
CA;

s:t: i 2 Gin
j ^ i 2

[
N2NF

VN

(11)

We then discuss how and when we can compensate
such lost contributions. First, cj is locally compensated
because it is one element in D~v0j given by Eq. (5) at the
restarting point. Second,

Q
pðci0Þ is compensated by

gfi;jgð
Q

p0 ðci0ÞÞ if
Q

p0 ðci0Þ is contained in ~vi. Recursively,
the condition is satisfied if

Q
p00 ðci0Þ is available in i’s

direct in-neighbor il�2, where p00 ¼ p=fi; jg. Finally,
because ci0 as the compensation part in D~v0i0 is always
accumulated into ~vi0 ,

Q
pðci0Þ is compensated in a recur-

sive way. When cj and all
Q

pðci0Þ in Eq. (11) are collected,
compensation is done, i.e., the impact of the local purge
message is offset. Then subsequent messages along any
path can be processed as normal.

Note that if j is kept by a failed node, the compensa-
tion is immediately accomplished once the local cj or any
message value is received, because now ~v0j is 0. tu
As shown in Fig. 2, the re-constructed delta value

D~v0i3 ¼ �0:07808 < 0. This is because the message values
along paths p1 [fi3g (0:04	 0:83 ¼ 0:02048), p2 [fi3g
(0:04	 0:82 ¼ 0:0256) and fi2; i3g (0:04	 0:8 ¼ 0:032), are
not available. However, c ¼ 0:04 is included in D~v0 for every
vertex. When the three paths are available again for i3, D~vi3
becomes positive, i.e., the lost contributions have been
compensated.

Similarly, the correctness of FR-WAC with pruning can
also be guaranteed by replacing the value of ~v0i with check-
point data.

Implementation: Our experiments in Section 5 show that
the pruning technique works well. However, it requires
users to provide more algorithm-level details. In the original
FR-WORB/FR-WAC, we do not need to judge when the lost

contributions of a vertex have been compensated, because
definitely the compensation will be accomplished at the
fixed point. However, in the variants with pruning, that is a
key issue as it decides when vertices can update themselves
and forward received messages. The logic of the judging
function f varies with algorithms, which must be specified
by users. Further, different from the theoretical analysis in
Eq. (11), in practice, message values accumulated into the
vertex state do not exist separately. Instead, they might be
accumulated when being transferred and then processed as
a whole. Hence, we cannot judge the compensation prog-
ress by analyzing each element in Eq. (11). In the following,
we show how to implement our pruning technique for
reversible and irreversible algorithms, respectively.

� Reversible algorithms: FR-WORB and FR-WAC are
designed for reversible algorithms where ‘�’ and ‘�’
are reversible, because of frequent purge and com-
pensation operations on vertex states. Both purge
messages and compensation messages are first accu-
mulated into D~vj and then ~vj. Clearly, D~vj identifies
howmany contributions are still lost at any time. The
judging function, ffjgð�Þ, thereby takes D~vj as input.
Then messages can be received and accumulated as
shown in Eq. (2). However, vertex update and mes-
sage propagation in Eq. (3) cannot be triggered until
ffjgð�Þ returns “true” andD~vj is not 0. We demonstrate
the pruning process exemplified by PR. In the failure-
free execution,Dvj is always greater than zero because
the pagerank score monotonously increases from 0.
However, upon failures, it is possible that D~vj < 0
because scores from some in-neighbors are not avail-
able. In FR-WORB and FR-WAC with pruning, the
negativeD~vj is held by j. We do not accumulate it into
~vj or send it, until it becomes positive after accumulat-
ing enough messages. The f function is defined as:
true ifD~vj > 0; false otherwise.

� Irreversible algorithms: Many algorithms cannot sat-
isfy the reversibility requirement. For example,
SSSP and CC in Table 1 have the irreversible “min”
and “max” operators. Intuitively, we can also judge
whether the compensation is done by directly com-
paring ~v1j with ~v0j . If the former has accumulated
more messages than the latter, then the lost contribu-
tion of j is compensated. In this way, we can
completely discard the purge operation and hence
remove the reversibility constraint. Because compar-
ing ~v1j with ~v0j is always feasible, our pruning strategy
can extend FR-WORB and FR-WAC to any irrevers-
ible algorithm supported by Maiter. Besides, we can
store ~v1j as D~v

0
j to save memory resources. To do this,

we define ‘�’ as ~v1j � ~v0j ¼ ~v1j , to initialize D~v0j with ~v1j .
D~vj then computes the real-time vertex state based
on received messages. When f returns true, we
update the local ~vj based on D~vj and then re-initialize
the latter to normally accumulate messages. Taking
SSSP as an example, lost contributions are compen-
sated if a distance smaller than ~v0j is found. That is, f
returns true if D~vj < ~v0j ; false otherwise.

Performance Analysis: Because of the non-deterministic
update behaviors, we use PR as an example to show that

1684 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 8, AUGUST 2018

the pruning technique improves the recovery efficiency. For
PR, based on Eq. (5), the constructed delta value D~v0j < 0
if
�ð1� dÞ=jV j þ d

P
i2Ginj
ð~v0i =jGout

i jÞ
�
< ~v0j . Then the judging

function f returns false to avoid sendingD~v0j aswell as updat-
ing ~vj, that saves the network bandwidth and CPU time. The
condition is often satisfied when the failure happens at the
late phase of computations and j resides on a surviving node.
This is because vj can accumulate many message values and
be reserved as ~v0j . Experiments in Section 5 validate that the
pruning technique works well especially when a single node
fails at the late phase of computations.

4.2 Non-Blocking Recovery without Standby Nodes

Using Standby Nodes or Not? Today’s distributed systems
typically require spare capacity (technically called standby
nodes). Upon failures, computations on failed nodes can be
quickly restarted on standbys. Although such standby
nodes keep empty during the failure-free execution, we still
need to pay for them on public cloud platforms such as
Amazon EC2. Otherwise, we must acquire new resources
when failures occur, which takes up to 90 seconds as
reported [23]. Worse, configuring systems requires addi-
tional efforts. Clearly, before new nodes are available, the
graph algorithm cannot proceed any more.

As analyzed above, there exists a tradeoff between the
expense and the recovery efficiency. Therefore, a naturally
desirable goal of tolerating failures is to pursue a solution
that (1) avoids provisioning spare capacity to save the bud-
get; and (2) can fully utilize the restarting time (resource
acquiring time and configuring time) to perform the recov-
ery progressively.

Non-Blocking Recovery without Standby Nodes. We achieve
our goal by maximally unleash the computational power
of surviving nodes. That is, data on failed nodes are tem-
porarily managed by surviving nodes. Surviving nodes
spend time doing more useful computations instead of
waiting for preparing replacements of failed nodes. Such
computations include performing the preprocessing work
and re-constructing input for recovery (see Section 3.1.1),
and then updating vertices by Eqs. (2) and (3).

One challenge is that perhaps a surviving nodewill handle
more data than its pre-assigned capacity, if it loads any parti-
tion originally assigned to a failed node. Keeping the newpar-
tition in memory inevitably consumes additional resources,
which is prohibitively expensive especially in multi-tenant
environments. Our solution is to utilize the local disk. Specifi-
cally, for any node with two or more partitions, one partition
is computed in memory while others are stored on local disk.
These partitions are scheduled between memory and disk in
a round-robin schemewith a scheduling interval �.

Discussion on Scheduling Interval: � is a key parameter
which decides how long a partition is kept in memory. We
first discuss its range. Let L denote the initialization over-
head of loading a partition into memory. Then � > L so
that we can perform useful updates in the remaining time
(�� L). On the other hand, it is necessary to broadcast ver-
tex states, in order to re-construct delta values, as shown in
Eqs. (4) and (5). We need to schedule partitions between
memory and disk multiple times to guarantee that all parti-
tions can receive messages. Specifically, if jNF j nodes fail,
then the jNF j lost partitions are evenly loaded by jNSj

surviving nodes, and each of the latter totally manages

ð1þ dNF
NS
eÞ partitions. Hence, ð2þ dNF

NS
eÞ times of scheduling

operations are required. Let R stand for the restarting cost.

We have R > ð2þ dNF
NS
eÞ � � to ensure that we can finish re-

constructing delta values. Together, Eq. (12) gives the range
of �. R can be estimated by history, while L, NF and NS are
online available. Eq. (12) also tells the system that whether
it can find a valid � to start the round-robin scheduling.

L < � <
R

2þ dNF
NS
e (12)

Further, even though a valid � exists, it is difficult to find
an optimal value in theory. A small � increases I/O costs
because of frequent scheduling operations. However, a
large value may slow down the progress per unit of time,
due to the absence of fresh messages produced and/or for-
warded by disk-resident partitions. In this paper we empiri-
cally pick up a proper � (explored in Section 5.7) to balance
the tradeoff between I/O costs and the message freshness.

4.3 Recovery with Load Balancing

After re-constructing delta values, vertices on failed nodes
are recomputed from scratch (FR-WORB) or the most recent
checkpoint (FR-WAC), instead of the point right before fail-
ures like surviving vertices. That leads to a heavy load
imbalance problem. If there exist sufficient standby nodes,
we can re-assign lost data on m failed nodes to n standby
nodes, where n ¼ mþ x, and x � 1. The additional x nodes
can balance the recovery load. When the failure recovery is
done, data on the additional x nodes will be sent back to m
replacements to release resources.

Intuitively, data can be re-assigned onto n nodes using
the simple “HASH” policy, i.e., v_id mod n. However, a key
issue is how to avoid collisions, because the original data
assignment usually uses the same policy in most existing
systems [1], [2], [5], i.e., v_id mod jNj, where jNj is the num-
ber of employed nodes before failures. For example, assume
that jNj ¼ 16, n ¼ 2, and vertex ids on the failed node
node 0 are {0, 16, 32, 48, . . .}. In re-assignment, the value of
v_id mod 2 is always zero, that is, vertices on node 0 are still
re-assigned onto a single replacement and another one is
idle. This paper designs a new hash function as shown in
Eq. (13). By using (jNj � n) instead of n, we can evenly parti-
tion data. Here, mapTable is a lookup table with only n ele-
ments, which maps idx into a new unique node id node_id.

node id ¼ mapTable½idx
; idx ¼ j mod ðjNj � nÞ (13)

We are aware that there are advanced partitioning techni-
ques, but none of them is suitable for our re-assignment sce-
nario. For example, multi-level partitioning [24] is not cost-
effective as its expensive runtimewill be counted in our online
processing time. By contrast, streaming partitioning [25]
requires to be run on a singlemachine. The scalability is poor.

5 EVALUATION

Now we evaluate our fault-tolerance methods. The details
of the general experiment setting are given below.

Solutions for Comparison: We analyze the performance of
our FR-WORB (termed WORB) and FR-WAC (termed

WANG ETAL.: A FAULT-TOLERANT FRAMEWORK FOR ASYNCHRONOUS ITERATIVE COMPUTATIONS IN CLOUD ENVIRONMENTS 1685

WAC) solutions in comparison with the baseline method
FR-Scratch (called Scratch). The improved variants with
message pruning (in Section 4.1) are denoted by pruWORB
and pruWAC, respectively. Note that existing checkpoint-
based methods are not involved in our study because of
expensive blocking or rollback costs. Specifically, as
reported in Ref. [13], the synchronous checkpointing solu-
tion suffers from blocking costs at global barriers. On the
other hand, to our knowledge, only GraphLab provides an
asynchronous checkpointing solution for fault-tolerance as
claimed in Ref. [4]. It indeed avoids blocking underlying
computations since global barriers are removed. However,
vertices are archived only when receiving checkpointing
flags broadcasted in the input graph. Propagating flags sig-
nificantly increases the elapsed time of performing a com-
plete checkpoint, and hence the rollback cost. For example,
Fig. 4 in Ref. [4] shows that a checkpoint of a three-dimen-
sional mesh is completed in 104s. However, it takes less
than 2s for WAC with the same setting. Hence, authors of
GraphLab have dropped the asynchronous checkpointing
solution from the publicly available source codes. Instead of
these proactive checkpointing methods, we use an up-to-
date reactive solution Zorro [11] as a competitor to demon-
strate the advantages of our proposals. Zorro is designed
based on the fact that some systems replicate vertices over
multiple nodes to optimize communication costs [26]. That
means we can use replicas on surviving nodes to directly
recover lost vertices. Although Zorro is implemented on top
of synchronous systems, it also works on the asynchronous
system Maiter by replicating vertices.

Experiment Cluster: We conduct experiments on Amazon
EC2 using 33 t2.micro instances/nodes. Each node running
Ubuntu Server 14.04 is equipped with 1 virtual core, 1 GB of
RAM, and 16 GB SSD storage. The distributed file system,
HDFS [27] (version: 1.0.1), is used to persist checkpoint data
inWORB.

Graph Algorithms and Datasets: Limited by the manuscript
length, we give the detailed evaluation results of our solu-
tions on two representative algorithms PR and PHP. We
also simply report the performance over other examples in
Table 1, SSSP and CC, in a subsection (Section 5.9).

All tests are done over real graphs listed in Table 2. We
convert these graphs into undirected ones as inputs when
running CC. Besides, the web graph Wiki has a larger diam-
eter than social networks LiveJ and Orkut.

Evaluation Metrics: Two metrics are evaluated in experi-
ments, Runtime of Recovery (ROR) and Runtime after Failure
(RAF).

Assume that failures occur at tf . ROR is defined as the
time elapsed from tf to tr where all lost vertex states have

been recovered. In theory, we can continuously compare the
state value achieved right before tf and the recomputed
value at tk in failure recovery for each failed vertex. Then we
can compute an accurate tr and hence ROR. However, that
means we need to continuously archive a vertex as the possi-
ble recovery target once it is updated. The cost is prohibi-
tively expensive. In this paper, we approximately infer ROR
by the summation over every vertex state vj on failed nodes.
That is, at tk, a progress metric is given by PMk ¼

P
j2VN �vkj ,

whereN 2 NF andNF is the set of failed nodes. Because vj is
monotonously increased/decreased to a fixed point, the
recovery is done when PMr ¼ PMf . Clearly, PM can be
updated incrementally with negligible overheads.

On the other hand, we use a global summation progress
metric (GPM) over all vertices to estimate RAF. GPMk ¼P

j2V �vkj . Let GPM1 be the summation at the fixed point.
Then RAF is the time elapsed from tf to tk where GPM1 ¼
GPMk. GPM1 is available by offline running algorithms
without failures.

Experiment Design: Different from synchronous systems,
no explicit barrier exists in asynchronous systems. To test
the effectiveness of our methods when failures occur at dif-
ferent phases in computations, we thereby state four scenar-
ios, T1, T2, T3 and T4. That is, failures occur at times T1, T2,
T3, and T4, respectively. Specifically, we run an algorithm
without failures beforehand to record the total runtime t
and then set the specific values of T1, T2, T3 and T4 as 0.1t,
0.5t, 0.7t and 0.9t, respectively. We inject a failure by manu-
ally killing the daemon process on the selected node, that
simulates a network failure. The node selection and the
impact on performance are given in Section 5.11. Besides,
Maiter enables priority computations. The priority queue
size is set to q ¼ 0:2jV j to achieve prominent performance
based on priori tests [5], [16].

Note that there exist two complex failure settings: multi-
ple failures and cascading failures. We introduce them
respectively in the following. We say a job encounters multi-
ple failures if multiple nodes fail at the same time. Multiple
failures often happen when using transiently available
cloud resources, like Amazon EC2 spot instances and Goo-
gle pre-emptible instances. These instances can be used
with low price but may be revoked whenever necessary
[28]. Usually, instances in a region can be revoked at the
same time. Cascading failures happen if a node fails before
data on another node that fails earlier are recovered. That is,
the two failures happen at different times. In this paper, we
consider the scenario where a new failure is encountered
before the restarting point for the old failure is constructed.
Our solutions will abandon the uncompleted restarting
point and then construct a new one to recover the two fail-
ures together. Note that for cascading failures and multiple
failures, we do not make any assumption about the relation-
ship among partitions where failures occur.

Below, we first illustrate the benefits brought by re-con-
structing delta values, by reporting the values of ROR
(Section 5.1) and RAF (Section 5.2). Important factors that
affect the fault-tolerance performance are also explored,
such as multiple failures (Section 5.3), cascading failures
(Section 5.4) and load balancing (Section 5.5). We further
evaluate the effectiveness of our non-blocking technique in
the absence of standby nodes (Section 5.6). Then we

TABLE 2
Real Graph Datasets (M: Million)

Graph # Vertices # Directed or
undirected edges

Type

LiveJ 1 4.8M 68/86M Social networks
Wiki 2 5.7M 130/209M Web graphs
Orkut 3 3.1M 234/234M Social networks

1http://snap.stanford.edu/data/soc-LiveJournal1.html
2http://haselgrove.id.au/wikipedia.htm
3http://socialnetworks.mpi-sws.org/data-imc2007.html

1686 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 8, AUGUST 2018

http://snap.stanford.edu/data/soc-LiveJournal1.html
http://snap.stanford.edu/data/web-BerkStan.html
http://snap.stanford.edu/data/web-BerkStan.html

experimentally give optimal parameters used in our meth-
ods (Section 5.7), including checkpointing intervals forWAC
and scheduling intervals for the non-blocking technique.
Section 5.8 validates the correctness and Section 5.9 reports
the recovery efficiency on more algorithms. We finally pro-
vide a comparison between our proposals and Zorro (Section
5.10), and test the impact when different partitions are lost
(Section 5.11).

5.1 Runtime of Recovery (ROR)

Suppose that 16 slave nodes are used and only a single one
fails. Unless otherwise specified, we replace failed nodes with
the same number of standby nodes. This suite of experiments
shows ROR values of Scratch, WORB, WAC, pruWORB, and
pruWAC. PR and PHP are tested over all datasets. In particu-
lar, the checkpointing interval t used inWAC and pruWAC is
set to 8 seconds for PR on the Orkut graph, and 4 seconds for
other combinations of algorithms and datasets. A detailed dis-
cussion about t is given in Section 5.7.

All tests are performed in the four scenarios: T1 where
the five compared methods exhibit similar performance,
and T2 � T4 where our proposals are supposed to be better.
Specifically, as plotted in Figs. 3, 4, and 5, the speedup of
WORB compared with Scratch is 4x (PR over LiveJ, T2) at
most. For WAC, it is even up to 11x (PR over LiveJ, T4). Our
pruning technique can further boost the recovery efficiency,
especially for WORB in T3 and T4 (up to 62 percent
improvement for PR onWiki, T4).

In T1, the benefit brought by our proposals is not signifi-
cant. In some cases, Scratch is even a preferred solution. The
reasons are twofold. First, in the early phase of computations,
accumulated workloads on surviving nodes are not so many
that the cost of recomputing them from scratch can be negligi-
ble. Second, there exist synchronization barriers in our meth-
odswhen flushingmessages, incurring additional overheads.

By contrast, in T2 � T4, Scratch takes more time to recom-
pute workloads on surviving nodes. However, our WORB
and WAC avoid this problem and can leverage such work-
loads to accelerate the recovery speed of lost data. They

thereby have superior performance to Scratch. WAC usu-
ally outperforms WORB, especially in T4. This is because at
the late phase of computations, it is still time-consuming to
recompute lost data on failed nodes from scratch, even with
the help of surviving vertices.

Our pruning technique creates an additional perfor-
mance gap between pruWORB/pruWAC and other competi-
tors, particularly when failures occur in T3 and T4. The
reason is that in such scenarios, more workloads are lost
and then more purge messages (e.g., negative delta values
for PR and PHP) are propagated. Such messages can be
effectively pruned by pruWORB and pruWAC. That can also
explain the phenomenon that the pruning impact is less sig-
nificant for WAC, since checkpointing has largely reduced
the number of lost workloads.

An interesting observation we can make is that in Fig. 4b,
WORB andWAC perform similarly. This is because PHP tra-
verses a graph starting from a given source vertex. For the
large diameter graph Wiki, there exists a long convergent
stage where only a few vertices are updated and others have
already converged. Clearly, convergent vertices on surviving
nodes can greatly accelerate the recovery upon failures,
—which largely narrows the performance gap between
WORB andWAC.

5.2 Runtime After Failure (RAF)

We test RAF using the same setting described in Section 5.1.
As shown in Figs. 6, 7, and 8, WORB/WAC is at most 2.6/
5.7 times faster than Scratch (PR over LiveJ, T4), while
pruWORB further offers up to 57.6 percent performance
improvement in comparison with WORB (PHP over LiveJ,
T4). Generally, the gain is not so large as that in ROR,
because the time of running remaining underlying work-
loads after recovery may occupy a large proportion of the
overall runtime, especially in T1 and T2. Different from
ROR, RAF of our proposals is inversely proportional to the
failure time, because our proposals can avoid rolling back
completed computations. However, for Scratch, it is a con-
stant since Scratch always recomputes from scratch. When
failures occur in T1 and T2, compared against WORB,

Fig. 3. ROR on LiveJ.

Fig. 4. ROR on Wiki.

Fig. 5. ROR on Orkut.

Fig. 6. RAF on LiveJ.

WANG ETAL.: A FAULT-TOLERANT FRAMEWORK FOR ASYNCHRONOUS ITERATIVE COMPUTATIONS IN CLOUD ENVIRONMENTS 1687

checkpointing in WAC brings marginal benefit, and even
slightly performance degradation. The reason is that RAF
counts the cost of archiving data forWAC.

Now we show another interesting observation. Let tremain

denote the time spent by a recovery solution on
Wremain—the remaining underlying workloads after failure
recovery. Further, the superscripts “b” and “o” respectively
indicate the baseline solution Scratch and one of our pro-
posals. By analyzing the relationship between ROR (Figs. 3,
4, and 5) and RAF (Figs. 6, 7, and 8), we can find that in
many cases toremain ¼ ðRAFo �RORoÞ � tbremain. The reasons
are twofold. First, Wo

remain �Wb
remain. In fact, upon failures,

there is the same number of underlying workloads left to do
in our proposals as in Scratch. However, some workloads in
the former have already been run along with the recovery of
failures. This can be explained by the fact that surviving verti-
ces are continuously updated without pausing. As a result,
for the remaining underlying workloads after failure recov-
ery, we have Wo

remain �Wb
remain. Second, our proposals may

possibly speed up the computation ofWo
remain. As mentioned

in Section 2.1, Maiter prioritizes the update order of vertices
for fast convergence. More specifically, computational nodes
in Maiter independently perform iterative updates over local
vertices. In one local iteration, a node always selects a fixed
number of verticeswith high priorities (i.e., large delta values)
for updates and skips others. If there exists a heavy skewed
distribution of priorities, great progress can be made with lit-
tle effort. However, after several local iterations, many large
delta values have been consumed. The degree of skew
becomes less significant. In this scenario, priority scheduling
is not cost effective since sorting priorities and performing
selection are not free. Note that selected vertices will propa-
gate their delta values to neighbors as shown in Eq. (3), that
dynamically updates the distribution of priorities. However,
the impact is limited because only a subset of vertices are
processed per local iteration. Clearly, shuffling all non-zero
delta values will enhance the impact and then increase the
degree of skew. This can be achieved by running a non-priori-
tized global synchronous iteration. We have studied the

performance variation of PR and PHP over all graphs when
running the non-prioritized synchronous iteration at different
times (T1 � T4) in their failure-free executions. We find that the
increased degree of skew can reduce the runtime by 8.8 per-
cent at most (from 1.2 percent). Such synchronous iteration is
also performed when building the restarting point in our
recoverymechanism. Thus, the computation ofWo

remain can be
accelerated. Together with the fact thatWo

remain �Wb
remain, for

WORB and pruWORB, we have toremain � tbremain. On the other
hand, WAC and pruWAC must write checkpoint data when
running Wo

remain, incurring additional but acceptable costs.
Hence, inmany cases, we can still have toremain � tbremain.

In a word, from the RAF perspective, WORB is a pre-
ferred solution when failures occur during the early compu-
tations, while WAC is more suitable for the scenario where
the process is interrupted at the late phase of computations.
By specifying pruning functions, pruWORB provides com-
parable performance toWAC.

5.3 RAF with Multiple Failures

We explore the features of compared solutions when multi-
ple failures are encountered. Using the same setting in Sec-
tion 5.1, Fig. 9 reports RAF of PR and PHP in T4, over the
LiveJ graph.

Scratch keeps RAF stable since it always forgets about
completed workloads on all nodes. Benefitting from check-
point data, a similar trend can also be observed for
WAC/pruWAC, but the performance is more prominent than
Scratch. On the contrary, RAF ofWORB gradually increases
with the increase of failed nodes, because more lost data are
recomputed from scratch and the benefits brought by surviv-
ing vertices become less significant. Nevertheless, evenwhen
50 percent of nodes fail,WORB still runs 1.4 times faster than
Scratch. pruWORB alleviates the performance degradation
but the effectiveness is limited in extreme cases such as more
than 75 percent (12 out of 16) of nodes fail.

5.4 RAF with Cascading Failures

Fig. 10 reports RAF when cascading failures happen. We
remove the results of WORB and WAC to reduce clutter,

Fig. 7. RAF on Wiki.

Fig. 8. RAF on Orkut.

Fig. 9. RAF with multiple failures (LiveJ).

Fig. 10. RAF with cascading failures (Orkut).

1688 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 8, AUGUST 2018

since pruWORB and pruWAC have been shown to give better
performance. All tests are run in T4 and the other setting is
the same as that used in Section 5.1. Here, F1 indicates a sin-
gle failed node, and (F1 þ F2) means that another node fails
at time t0f when constructing the restarting point for F1. For
Scratch, we also set another node failed at t0f . We can find
that both pruWORB and pruWAC outperform Scratch.

5.5 ROR with Load Balancing

This group of experiments validates that balancing the load
of recovery (Section 4.3) can drop ROR. Without loss of gen-
erality, PR over Wiki and PHP over LiveJ as two cases are
tested. Specifically, we run them using 10 nodes but when
one fails in T4, the lost data are evenly assigned to multiple
standby nodes, i.e., replacements (the # of replacements
ranges from 1 to 7).

As shown in Fig. 11, ROR of WORB is reduced by up to
30.2 and 53.8 percent for PR and PHP, respectively. This is
because recomputing from scratch is extremely time-con-
suming and then leads to a heavy load imbalance. However,
pruWORB, WAC and pruWAC have already optimized the
majority of recovery workloads. Thus, using more replace-
ments brings marginal benefit.

5.6 Non-Blocking Fault-Tolerance

We next show the effectiveness of the non-blocking optimiza-
tion technique. Based on Ref. [23] and our experience, it takes
about 90 seconds to acquire new Amazon EC2 instances.
Worse, we need to spend additional 10 seconds on configur-
ing the system. The restarting cost R is thereby 100 seconds.
An important parameter, scheduling interval �, is set by
� ¼ 4L. More discussions regarding � are given in Section 5.7.
Because of the effectiveness of pruning messages, here we
only study the performance of pruWORB and pruWAC. Let
nb-pruWORB and nb-pruWAC stand for their non-blocking
variants. UsingPR over LiveJ as an example and the same set-
ting in Section 5.1, Fig. 12 depicts RAF values.

Sub-figure (a) shows that non-blocking variants consis-
tently outperform pruWORB and pruWAC. The performance

gap is particularly large in T3 and T4 because PR under
nb-pruWORB/nb-pruWAC has converged before the newly
applied instance is ready. Sub-figure (b) shows that both
nb-pruWORB and nb-pruWAC scale well with failed nodes.

5.7 Determining Fault-Tolerance Parameters

In previous experiments, we know WAC usually exhibits
prominent performance but requires to archive checkpoint
data periodically. Also, the non-blocking technique is impor-
tant for efficiency but requires to schedule data between
memory and disk. Both checkpointing interval (t) and sched-
uling interval (�) are user-specified and now we empirically
give the roughly optimal values.

Checkpointing Interval: We analyze the runtime of the fail-
ure-free execution using different t values. t ¼ þinf means
that no checkpoint is archived. Fig. 13 shows the perfor-
mance variation when archiving data onto local file systems.
Clearly, a quite large range of t can guarantee that the over-
head of archiving data is nearly zero because of the asyn-
chronous design. Our further study reveals that even
archiving data onto distributed file systems such as HDFS
with multiple data replicas, the additional overhead is still
negligible (Fig. 14). Thus, we use HDFS to store checkpoint
data with 3 replicas, to provide high availability. Because a
smaller t can provide a more recent checkpoint to reduce
the number of re-computations, we then set t ¼ 8 seconds
for PR over Orkut and t ¼ 4 seconds for other cases.

Scheduling Interval: To find a real optimal interval, we
repeatedly run PR and manually set the � value every time.
Fig. 15 shows RAF of nb-pruWORB on different graphs with
R ¼ 100 seconds. With � being increased, we find that RAF
first decreases and then increases. This can be explained by
the tradeoff between I/O costs and the message freshness.
Let L indicate the initialization overhead before computing
a partition, which is available by online statistics. We find
� ¼ 4L can roughly hit the “sweet spot”. Automatically
finding this sweet spot is a subject for future work.

5.8 Empirical Validation of Correctness

Sections 3.2 and 4.1 prove the correctness of WORB, WAC
and their pruning variants. Now we empirically validate it

Fig. 11. ROR with load balancing.

Fig. 12. Effectiveness of non-blocking fault-tolerance (PR, LiveJ).

Fig. 13. Impact of archiving data onto local file systems.

Fig. 14. Impact of archiving data onto HDFS.

WANG ETAL.: A FAULT-TOLERANT FRAMEWORK FOR ASYNCHRONOUS ITERATIVE COMPUTATIONS IN CLOUD ENVIRONMENTS 1689

by continuously monitoring the global progress metric
GPMk at sampled time instances. Without loss of generality,
in Fig. 16, we report the results of PR and PHP over LiveJ,
using the same setting in Fig. 6. More specifically, the failure
time T4 ¼ tf ¼ 90=57 second for PR/PHP. By running
PR/PHP until they converge, we can observe that algo-
rithms under our proposals converge to the same fixed
point as achieved in Scratch.

5.9 Performance on More Graph Algorithms

Because of the removal of the reversibility requirement,
pruWORB and pruWAC can be applied to irreversible algo-
rithms like SSSP and CC tested in this section. The experi-
ments are run using the same setting in Section 5.1.

Figs. 17 and 18 present RAF on the Orkut graph. We find
that both pruWORB and pruWAC outperform Scratch.
However, different from the results of PR and PHP, the per-
formance gap on SSSP and CC is less significant. This is
because SSSP/CC is a traversal algorithm [29] where the
shortest distances or the component ids are propagated
based on the graph topology. Many vertices can quickly
converge and then do not participate in computations, lead-
ing to a very short overall runtime t. Upon failures, Scratch
with RAF ¼ t becomes a strong competitive solution. On
the other hand, in our solutions, constructing the restarting
point as an atomic operation requires to broadcast states of
all vertices. The broadcasting cost tb is fixed no matter when
failures occur. Given a short t, tbt can be large (74 percent for
SSSP and 47 percent for CC). Then the benefits of our

solutions are limited when compared with Scratch. Many
other irreversible algorithms are also traversal, like
Breadth-First-Search [29], Betweenness Centrality and
Closeness Centrality [30]. We are then motivated to opti-
mize tb for better running these algorithms. One possible
method is to prioritize the importance of vertices and then
only broadcast states of some vertices with high priorities.
We will investigate it as future work.

5.10 Comparison with Zorro

We then conduct experiments against Zorro in Fig. 19. Zorro
recovers failures based on replicas of vertices. However, rep-
licating vertices will improve the performance of an algo-
rithm [26]. To make a fair comparison, we first run recovery
solutions respectively on Maiter and its variant with vertex
replications, and then normalize ROR and RAF to Scratch.

Using PR as an example, we first evaluate normalized
ROR and RAF in sub-figures (a)-(c). When a single failure
happens, Zorro generally performs best. This is because
almost all of lost vertices can be recovered by replicas and
there is no extra cost incurred by archiving data. However,
our asynchronous checkpointing methods WAC and
pruWAC outperform Zorro if multiple nodes fail. In this
case, many replicas are also lost and hence a lot of vertices
on failed nodes will be reset to 0. RAF thereby increases as
shown in sub-figure (c). Sub-figure (d) then compares the
vertex replication factors of our proposals and Zorro on
varies of graph datasets. Generally, we can see that Zorro
achieves prominent ROR and RAF at the price of huge
memory consumption (i.e., a large replication factor).

Fig. 15. Impact of scheduling intervals (PR, a single failure in T4).

Fig. 16. Correctness (LiveJ, a single failure in T4).

Fig. 17. RAF of SSSP on Orkut.

Fig. 18. RAF of CC on Orkut.

Fig. 19. Runtime analysis and memory usage of Zorro (PR).

1690 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 8, AUGUST 2018

5.11 Impact of Losing Different Partitions

We finally explore the impact on ROR and RAF when losing
different partitions. By selecting different nodes to simulate
a single failure at T2 and T4, Fig. 20 shows the runtime anal-
ysis of WORB. We notice that the runtime variation is negli-
gible. This is mainly due to the Hash-based graph
partitioning policy which is widely used in distributed sys-
tems. Hash provides a uniform distribution of vertices
among partitions. Then different partitions evenly contrib-
ute to the algorithm convergence. Accordingly, in all experi-
ments through this paper, we can randomly select a node
and then manually kill its daemon process to simulate a net-
work failure. Without loss of generality, we always select
the node with id ¼ 1 as the failed node. When simulating
multiple failures and cascading failures, nodes are selected
in an ascending order of ids.

6 RELATED WORK

Many representative techniques have been designed for toler-
ating failures in graphprocessing systems.All of thembasically
fall into three categories, checkpoint-based, lineage-based,
and reactive paradigms.We summarize themas follows.

Checkpoint-Based Solutions: The synchronous checkpointing
solution as an early technique presented in Ref. [1] has been
extensively used in Pregel-like systems [1], [2], [31]. Research-
ers have proposedmany variants to improve its performance,
such as partially overlapping CPU computations and I/O
operations [18], reducing the checkpoint data to vertex values
[19], confining re-computations to lost data and/or paralleliz-
ing such re-computations [17], [18], [32]. These techniques
work well in synchronous systems, but result in suboptimal
performance in asynchronous systems. This is because they
require expensive global barriers. Then the benefit brought by
asynchronous computations can be offset.

GraphLab [4] employs a variant of the Chandy-Lamport
method [9] for its asynchronous engine. This variant can
archive data without global barriers, reducing the check-
pointing overhead. However, the elapsed time of perform-
ing a complete checkpoint is large. Then the recovery cost is
expensive since workloads on surviving nodes are still
rolled back to the most recent checkpoint.

Differently, our proposals remove the requirement of bar-
riers and allow surviving vertices to keep performing updates
in failure recovery without rollback. Also, we design a new
data re-assignment functionwith a small lookup table

Lineage-Based Solutions: Some systems like Spark employ
a lineage method to track the dependency of coarse-grained
data structures [8], [33], [34]. Lost data can be recomputed

by analyzing the lineage upon failures. Unlike checkpoint-
ing, the lineage solution saves storage space and network
bandwidth since the volume of dependency information
can be much smaller than that of algorithm-specified data.
However, asynchronous computations generate fine-
grained updates, which makes the dependency relationship
prohibitively complicated and hence largely increases the
overhead of maintaining the lineage.

Reactive Solutions: Recently, reactive recovery solutions
without checkpointing have attracted a lot of attention. Some
techniques focus on utilizing redundant data to recover lost
data [10], [11], [12]. However, redundant information may
quickly exhaust memory resources [35]. These techniques
are not always feasible to scale to massive datasets. Schelter
et al. [13] design a restarting point to resume computations
for synchronous systems. However, it requires users to care-
fully design an algorithm-specified compensation function,
which is usually a nontrivial task [18].

Our proposals replace vertex values automatically,
which eases the burden of users. But more importantly,
they do not store multiple replicas of vertices, largely reduc-
ing the memory consumption.

7 CONCLUSION

This paper proposes two fault-tolerance methods for asyn-
chronous graph processing systems. Unlike the most widely
used checkpointing techniques, our methods remove expen-
sive synchronous barriers and hence are naturally suitable
for asynchronous engines. Many optimization techniques,
like pruning messages, non-blocking recovery, and load bal-
ancing, are also designed to further boost the efficiency in
different scenarios. Performance studies on real-world
graphs validate the effectiveness of our proposals.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (61433008, U143520006, 61472071, and
61528203). Lixin Gao was supported by the U.S. National
Natural Science Foundation grant CNS-1217284. Zhigang
Wang was a visiting student at UMass Amherst, supported
by China Scholarship Council.

REFERENCES

[1] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N.
Leiser, and G. Czajkowski, “Pregel: A system for large-scale graph
processing,” in Proc. SIGMOD, 2010, pp. 135–146.

[2] “Giraph.” (2016, Oct.). [Online]. Available: http://giraph.apache.
org/, Accessed on: Nov. 2017.

[3] “Apache spark.” (2017, Dec.). [Online]. Available: http://spark.
apache.org/, Accessed on: Nov. 2017.

[4] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed graphlab: A framework for machine
learning and data mining in the cloud,” in Proc. VLDB Endowment,
vol. 5, no. 8, pp. 716–727, 2012.

[5] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Maiter: An asynchro-
nous graph processing framework for delta-based accumulative
iterative computation,” IEEE Trans. Parallel Distrib Syst., vol. 25,
no. 8, pp. 2091–2100, Aug. 2014.

[6] Z. Wang, Y. Gu, Y. Bao, G. Yu, and J. X. Yu, “Hybrid pulling/
pushing for i/o-efficient distributed and iterative graph
computing,” in Proc. SIGMOD, 2016, pp. 479–494.

[7] M. Han, K. Daudjee, K. Ammar, M. T. €Ozsu, X. Wang, and T. Jin,
“An experimental comparison of pregel-like graph processing
systems,” Proc. VLDB Endowment, vol. 7, no. 12, pp. 1047–1058,
2014.

Fig. 20. Runtime analysis when selecting different nodes to simulate a
single failure at T2 and T4 (PR, LiveJ, WORB).

WANG ETAL.: A FAULT-TOLERANT FRAMEWORK FOR ASYNCHRONOUS ITERATIVE COMPUTATIONS IN CLOUD ENVIRONMENTS 1691

http://giraph.apache.org/
http://giraph.apache.org/
http://spark.apache.org/
http://spark.apache.org/

[8] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster
computing,” in Proc. NSDI, 2012, pp. 2–2.

[9] K. M. Chandy and L. Lamport, “Distributed snapshots: Determin-
ing global states of distributed systems,” ACM Trans. Comput.
Syst., vol. 3, no. 1, pp. 63–75, 1985.

[10] Z. Chen, “Algorithm-based recovery for iterative methods with-
out checkpointing,” in Proc. HPDC, 2011, pp. 73–84.

[11] M. Pundir, L. M. Leslie, I. Gupta, and R. H. Campbell, “Zorro:
Zero-cost reactive failure recovery in distributed graph proc-
essing,” in Proc. SoCC, 2015, pp. 195–208.

[12] J. Wang, M. Balazinska, and D. Halperin, “Asynchronous and
fault-tolerant recursive datalog evaluation in shared-nothing
engines,” Proc. VLDB Endowment, vol. 8, no. 12, pp. 1542–1553,
2015.

[13] S. Schelter, S. Ewen, K. Tzoumas, and V. Markl, “All roads lead to
rome: optimistic recovery for distributed iterative data proc-
essing,” in Proc. CIKM, 2013, pp. 1919–1928.

[14] Z. Wang, L. Gao, Y. Gu, Y. Bao, and G. Yu, “A fault-tolerant
framework for asynchronous iterative computations in cloud
environments,” in Proc. SoCC, 2016, pp. 71–83.

[15] S. Brin and L. Page, “The anatomy of a large-scale hypertextual
web search engine,” in Proc. WWW, 1998, pp. 107–117.

[16] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Priter: A distributed
framework for prioritizing iterative computations,” TPDS, vol. 24,
no. 9, pp. 1884–1893, 2013.

[17] Y. Shen, G. Chen, H. Jagadish, W. Lu, B. C. Ooi, and B. M. Tudor,
“Fast failure recovery in distributed graph processing systems,”
Proc. VLDB Endowment, vol. 8, no. 4, pp. 437–448, 2014.

[18] C. Xu, M. Holzemer, M. Kaul, and V. Markl, “Efficient fault-
tolerance for iterative graph processing on distributed dataflow
systems,” in Proc. ICDE, 2016, pp. 613–624.

[19] J. Xue, Z. Yang, Z. Qu, S. Hou, and Y. Dai, “Seraph: An efficient,
low-cost system for concurrent graph processing,” in Proc. HPDC,
2014, pp. 227–238.

[20] Z. Guan, J. Wu, Q. Zhang, A. Singh, and X. Yan, “Assessing and
ranking structural correlations in graphs,” in Proc. SIGMOD, 2011,
pp. 937–948.

[21] L. Katz, “A new status index derived from sociometric analysis,”
Psychometrika, vol. 18, no. 1, pp. 39–43, 1953.

[22] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus: A peta-
scale graph mining system implementation and observations,” in
Proc. ICDM, 2009, pp. 229–238.

[23] M. Mao and M. Humphrey, “A performance study on the vm
startup time in the cloud,” inProc. Cloud Comput., 2012, pp. 423–430.

[24] D. LaSalle and G. Karypis, “Multi-threaded graph partitioning,”
in Proc. IPDPS, 2013, pp. 225–236.

[25] I. Stanton and G. Kliot, “Streaming graph partitioning for large
distributed graphs,” in Proc. SIGKDD, 2012, pp. 1222–1230.

[26] I. Hoque and I. Gupta, “Lfgraph: Simple and fast distributed
graph analytics,” in Proc. 1st ACM SIGOPS Conf. Timely Results
Operating Syst., 2013, Art. no. 9.

[27] “Apache hadoop.” (2017, Dec.). [Online]. Available: http://
hadoop.apache.org/, Accessed on: Nov. 2017.

[28] S. Subramanya, T. Guo, P. Sharma, D. Irwin, and P. Shenoy,
“Spoton: A batch computing service for the spot market,” in Proc.
SoCC, 2015, pp. 329–341.

[29] R. Pearce, M. Gokhale, and N. M. Amato, “Multithreaded asyn-
chronous graph traversal for in-memory and semi-external mem-
ory,” in Proc. SC, 2010, pp. 1–11.

[30] “Traversal algorithms.” [Online]. Available: https://github.com/
jegonzal/PowerGraph/tree/master/toolkits/graph_algorithms

[31] S. Salihoglu and J. Widom, “GPS: A graph processing system,” in
Proc. SSDBM, 2013, Art. no. 22.

[32] D. Yan, J. Cheng, and F. Yang, “Lightweight fault tolerance in large-
scale distributed graph processing,” CoRR, vol. abs/1601.06496,
2016, http://arxiv.org/abs/1601.06496

[33] T. Martsinkevich, O. Subasi, O. Unsal, F. Cappello, and J. Labarta,
“Fault-tolerant protocol for hybrid task-parallel message-passing
applications,” in Proc. CLUSTER, 2015, pp. 563–570.

[34] C. Cao, T. Herault, G. Bosilca, and J. Dongarra, “Design for a soft
error resilient dynamic task-based runtime,” in Proc. IPDPS, 2015,
pp. 765–774.

[35] C. Zhou, J. Gao, B. Sun, and J. X. Yu, “Mocgraph: Scalable distrib-
uted graph processing using message online computing,” Proc.
VLDB Endowment, vol. 8, no. 4, pp. 377–388, 2014.

Zhigang Wang received the BSc and MSc
degrees in computer science from Northeastern
University, China, in 2011 and 2013, respectively.
He is currently working towards the PhD degree
in computer science at Northeastern University.
He has been a visiting PhD student in the Univer-
sity of Massachusetts Amherst during December
2014 to December 2016. His research interests
include cloud computing, distributed graph proc-
essing, and machine learning.

Lixin Gao received the PhD degree in computer
science from the University of Massachusetts at
Amherst, in 1996. Now she is a professor of elec-
trical and computer engineering with the Univer-
sity of Massachusetts at Amherst. Her research
interests include social networks, Internet routing,
network virtualization and cloud computing.
Between May 1999 and January 2000, she was a
visiting researcher in AT&T Research Labs and
DIMACS. She was an Alfred P. Sloan fellow
between 2003-2005 and received an NSF

CAREER Award in 1999. She won the best paper award from IEEE
INFOCOM 2010 and ACM SoCC 2011, and the test-of-time award in
ACM SIGMETRICS 2010. She received the Chancellors Award for Out-
standing Accomplishment in Research and Creative Activity in 2010.
She is a fellow of the IEEE and ACM.

Yu Gu received the PhD degree in computer soft-
ware and theory from Northeastern University,
China, in 2010. Currently, he is a professor and
the PhD supervisor with Northeastern University,
China. His current research interests include big
data analysis, spatial data management and
graph data management. He is a senior member
of the China Computer Federation (CCF).

Yubin Bao received the PhD degree in computer
software and theory from Northeastern Univer-
sity, China, in 2003. Currently, he is a professor
with Northeastern University, China. His current
research interests include data warehouse and
OLAP, graph data management, and cloud com-
puting. He is a senior member of the China Com-
puter Federation (CCF).

Ge Yu received the PhD degree in computer sci-
ence from Kyushu University of Japan, in 1996.
He is currently a professor and the PhD supervi-
sor with Northeastern University of China. His
research interests include distributed and parallel
database, OLAP and data warehousing, data
integration, graph data management, etc. He is a
member of the IEEE Computer Society, IEEE,
ACM, and a fellow of the China Computer Feder-
ation (CCF).

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1692 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 8, AUGUST 2018

http://hadoop.apache.org/
http://hadoop.apache.org/
https://github.com/jegonzal/PowerGraph/tree/master/toolkits/graph_algorithms
https://github.com/jegonzal/PowerGraph/tree/master/toolkits/graph_algorithms
http://arxiv.org/abs/1601.06496

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

