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ABSTRACT
Myriad of parameter estimation algorithms can be performed by an
Expectation-Maximization (EM) approach. Traditional synchronous
frameworks can parallelize these EM algorithms on the cloud to
accelerate computation while guaranteeing the convergence. How-
ever, expensive synchronization costs pose great challenges for ef-
ficiency. Asynchronous solutions have been recently designed to
bypass high-cost synchronous barriers but at expense of potentially
losing convergence guarantee.

This paper first proposes a flexible synchronous parallel frame-
work (FSP) that provides the capability of synchronous EM algo-
rithms implementations, as well as significantly reduces the barrier
cost. Under FSP, every distributed worker can immediately suspend
local computation when necessary, to quickly synchronize with each
other. That maximizes the time fast workers spend doing useful work,
instead of waiting for slow, straggling workers. We then formally
prove the algorithm convergence. Further, we analyze how to auto-
matically identify a proper barrier interval to strike a nice balance
between reduced synchronization costs and the convergence speed.
Empirical results demonstrate that on a broad spectrum of real-world
and synthetic datasets, FSP achieves as much as 3x speedup over the
up-to-date synchronous solution.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Computer
systems organization → Cloud computing;

KEYWORDS
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1 INTRODUCTION
Expectation Maximization (EM) [14] is one of the top 10 data min-
ing algorithms [37] used today. Numerous applications including
clustering [17, 22], image processing [28], medical research [8], and
bioinformatics [38], use EM to estimate parameters. Take K-means

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5028-0/17/09. . . $15.00
https://doi.org/10.1145/3127479.3128612

clustering [22] as an example. EM refines k clusters (parameters) iter-
atively, starting from some initial guess. Each iteration consists of an
Expectation step (E-step) and a Maximization step (M-step). Based
on observed input data points and the current cluster estimation, E-
step computes unobserved point-cluster assignment. While, M-step
re-estimates clusters to be those minimizing the distance between
points and the belonging clusters based on results in E-step (i.e.,
maximizing the likelihood/objective in general EM applications).

Motivation: Because of applications with massive observed data vol-
ume, there is an imperative need for sound and effective EM method-
ologies. Conventional efforts have made significant advancements,
such as mini-batch computation for fast convergence [27, 31, 33]
and parallelizing E-step for scalability [21, 36, 41]. However, all
of them feature contributions in synchronous systems which suffer
from costly global barriers in distributed environments, because of
slow, straggling workers (technically, processes or threads). For ex-
ample, we evaluate the impact of stragglers for K-means using the
state-of-the-art synchronous solution [41]. The distributed cluster
consists of 16 physical machines. We first submit a job by starting 16
workers, one worker per machine, to process a public dataset HIGGS
with 11 million data points and 28 attributes per point. Another job
with only one worker is subsequently run on a small synthetic dataset
(60 thousand points, 50 attributes per point) produced in a random
manner. Obviously, one of the 16 machines run two workers at the
same time, and the two workers become stragglers due to resource
contention. Compared with the scenario where the second job is not
submitted, we find that the runtime of the first job increases from 175
seconds to 246 seconds, leading to 40% performance degradation.

We are aware of some recent works regarding the straggler prob-
lem, all of which are far from idle. These techniques include data
migration or backup [6, 15, 16, 18] which requires additional net-
work bandwidth, memory and/or compute resources; fine-grained
synchronous computation [20, 26] that still suffers from stragglers in
the subset of workers; and asynchronous implementation [5, 19, 30]
without strict convergence guarantee (i.e., monotonously increas-
ing/decreasing the objective value per iteration) [12].

Hence, a naturally desirable goal for EM algorithms is to pursue
a system that (1) can maximally unleash the computational power
of fast workers by spending time doing more useful computations
instead of waiting for slow, straggling workers at the barrier; (2)
enjoys the strict convergence guarantee; and (3) is lightweight —
without additional resource requirement.

Problem Analysis: From the convergence perspective, a synchro-
nous barrier is necessary. However, the currently used barrier mech-
anism cannot cope with our first requirement. This is because it
follows a pre-defined synchronous parallel (PSP) design where on
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every worker, workloads per iteration are assigned prior to compu-
tation. A synchronous barrier is passively performed if and only if
every worker has already reached the pre-defined barrier location,
i.e., completing pre-assigned workloads. Fast workers thereby block
themselves at the barrier.

Our Contributions: In this paper, we explore a path to such a target
system mentioned above.

We first challenge the conventional wisdom that EM-based al-
gorithms have to be performed with PSP. We aim to design a new
flexible synchronous parallel (FSP) framework that can largely re-
duce the impact of stragglers. FSP still follows the synchronous
model for convergence but no workload is pre-assigned, and hence,
no barrier location is pre-established. Instead, it enables a coordi-
nator to actively synchronize all workers if necessary. Once the
coordinator initiates a barrier, each worker will pause right after
completing an atomic operation and then report intermediate results.
Because an atomic operation leads to negligible overhead, the fastest
worker pauses at nearly the same time instance with the slowest
worker, greatly reducing the waiting time. Besides, we formally
prove the convergence of FSP-based EM algorithms.

FSP decouples the global barrier and the policy of processing
local workloads on workers. That provides opportunities to design
an efficient fault-tolerance solution. Specifically, failed workers can
be regarded as stragglers without any progress. That means, before
such workers are restarted on standby machines, surviving workers
can continue computation without pause. This is useful especially
when running EM algorithms on transient resources [32] provided by
today’s public cloud platforms, such as Amazon EC2 spot instances.
Usually, transient resources with lower price may be revoked fre-
quently (failures). Worse, it is very time-consuming to apply for
a new spot instance and initialize environments (e.g., installing re-
quired Softwares and reloading input data). Thus, it will greatly
improve the overall performance if the time before restarted workers
return can be utilized.

Note that the flexible barrier in FSP is still not free, and hence
seeking a proper barrier interval is very important to balance the
synchronization cost and the convergence speed. The flexibility
mechanism of FSP, however, forces programmers to either blindly
select an interval or experience a long learning curve to understand
the internals of underlying engines. To gain optimal performance
while insulating programmers from tedious low-level details, we
design an adjusting component. It can adaptively and automatically
compute a roughly optimal interval. To this end, it constantly collects
execution statistics like convergence speed and synchronization costs
and employs a recursive policy to identify the final interval.

Our major contributions are summarized as below.

• We propose a new flexible synchronous parallel framework
called FSP for fast iterative EM computation. Different from
asynchronous and pre-defined synchronous solutions, FSP
allows workers to perform a flexible barrier to reduce syn-
chronization costs caused by stragglers, while still providing
strict convergence guarantee. FSP also enables an efficient
fault-tolerance mechanism.
• We present an interval-adjusting component to identify a

proper barrier interval for FSP. By balancing the tradeoff

between the synchronization costs and convergence speed,
FSP gains optimal performance.
• The resulting prototype system Flegel exposes the uniform

APIs to users for easily programming various EM algorithms.
Although Flegel focuses on EM, it can be easily general-
ized to other machine learning algorithms, such as Stochastic
Gradient Descent (SGD).
• Extensive experimental studies explore the performance fea-

tures of our proposals. We demonstrate that the speedup of
Flegel compared against the state-of-the-art work is up to 3.

Paper Organization: The remainder of this paper is organized as
follows. Section 2 formally introduces EM and Section 3 presents
our FSP framework with a formal convergence proof. Section 4
discusses the system design of Flegel. Section 5 reports extensive
evaluation results. Section 6 highlights the related work and Section 7
finally concludes this work.

2 PRELIMINARIES
This section reviews the EM approach and its efficient variant, fol-
lowed by a concrete example application.

Full-batch EM Computation [14]: Let X be an observed value
of some random variable, typically consisting of n independent
data points. X can be decomposed as {X1, ...,Xn }. Z is another
variable associated with X but unobserved, and Z = {Z1, ...,Zn }.
Now we wish to find the maximum log likelihood estimate L(θ ) =∑n
i=1 log P(xi |θ ) for unknown parameter θ of a model for X and Z .

The marginal probability for Xi , P(xi |θ ) =
∑
zi P(zi ,xi |θ ), where

P(zi ,xi |θ ) indicates the joint probability forZi andXi parameterized
using θ . Usually, it is hard to solve this problem directly since both
Z and θ are unknown. However, EM can maximize L(θ ) by starting
with some initial guess about θ (0), and then proceeding to iteratively
generate successive estimate, θ (t ), at the t-th iteration (t = 1, 2, ...).
Each iteration is performed by applying an E-step and a M-step:

• E-step: Estimate a distribution Q
(t )
i over the range of Zi for

every data point Xi (full-batch), given the currently estimated
parameter θ (t−1). That is, ∀Xi ∈ X ,Q(t )i (zi ) = P(zi |xi ,θ (t−1)),
subject to

∑
zi Q

(t )
i (zi ) = 1 and Q(t )i (zi ) ≥ 0. In fact, Q(t )i rep-

resents the value of unobserved variable Zi .

• M-step: Update θ (t ) to the θ that can maximize the function∑n
i=1 EQ (t )i

[log P(zi ,xi |θ )], where E
Q (t )i
[·] denotes expecta-

tion with respect to Q
(t )
i found in E-step.

Incremental Mini-batch EM Variant: For fast convergence, a
mini-batch variant partially implements E-step [27, 31, 33, 41], i.e.,
only a subset of data points (called a block Bj , s.t. ∪jBj = X ) are
computed at an iteration. Note that updating θ depends on all Qi ,
but, as discussed above, only some of them are re-calculated in the
partial E-step. To eliminate re-computations related to untouched
data points, an efficient policy is to compute θ based on a statistics
vector s(t ) =

∑n
i=1 s

(t )
i (Zi ,Xi ), where s(t )i (zi ,xi ) indicates statistics

associated with Q
(t )
i (zi ) for Xi . s(t ) can be updated incrementally

by accumulating the change of si (Zi ,Xi ), i.e., ∆si . Further, Neal et
al. [27] re-define the goal of mini-batch variants as that, both the E
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and the M steps try to maximize, or at least increase a new objective
function shown in Eq. (1).

F (Q,θ ) =
n∑
i=1

Fi (Qi ,θ ),where

Fi (Qi ,θ ) = EQi [log P(zi ,xi |θ )] + H (Qi )
(1)

Here H (·) is the entropy of Qi . Hence, at each iteration, the full-
batch EM computation with L(θ ) can be equivalently re-written as
Eq. (2) (proved by Theorem 1 in [27]), where Q(t )i is set to the Qi

that maximizes Fi (Qi ,θ ), given by Q
(t )
i (zi ) = P(zi |xi ,θ (t−1)).



E-step: Choose Bj to be updated, and ∀Xi ∈Bj :

Set s(t )i (Zi ,Xi )=EQ (t )i
[s(t )i (zi ,xi )].

Set ∆s(t )i =s
(t )
i (Zi ,Xi )−s

(t−1)
i (Zi ,Xi ).

Commit every ∆s
(t )
i , Xi ∈ Bj .

Wait for newly updated θ (t ).

M-step: Set s(t )=s(t−1)+∆s(t )i , Xi ∈ Bj .

Set θ (t ) to the θ that maximizes F (Q,θ )

based on s(t ).

Broadcast θ (t ).

(2)

K-means example [22, 23]: As a simple EM application in cluster-
ing, K-means aims to partition n observed data points in X into k
clusters θ = {θ1, ...,θk } so as to minimize the objective function:
f =

∑k
j=1

∑
Xi ∈θ j | |Xi − µθ j | |, where µθ j =

1
|θ j |

∑
Xi ∈θ j Xi is the

centroid of θ j . The range of Zi is {1, 2, ...,k}, indicating to which of
k clusters a given observed Xi is supposed to be assigned. Specif-
ically, E-step assigns Xi to the nearest cluster θ j̃ : Q

(t )
i (zi = j) = 1,

if j = j̃; 0 otherwise (j , j̃). The statistics s(t ) includes two k-
dimensions vectors: S with Sj =

∑
Xi ∈θ j Xi , and C with Cj = |θ j |,

j = 1, 2, ...,k. Suppose that Xi changes its cluster assignment from
θ j to θ j′ . S and C are updated incrementally by: Sj = Sj − Xi ,
Sj′ = Sj′ + Xi ; Cj = Cj − 1, Cj′ = Cj′ + 1. In M-step, θ j is updated

by µθ j =
Sj
Cj

. Other algorithms, like Fuzzy C-Means (FCM) [17]
and Gaussian Mixture Model (GMM) [27, 41], can be implemented
in the similar way.

Distributed EM Implementation: For better scalability, data points
X can be partitioned into multiple workers (called data-parallelism).
That can be easily supported by today’s parameter server systems
where the parameter server as a coordinator synchronizes workers
(running full-batch or mini-batch E-step) at pre-defined barriers to
update θ . These systems provide strict convergence guarantee, but
suffer from expensive waiting costs caused by stragglers, — which
our new flexible synchronous parallel framework can reduce.

3 FSP FOR EM ALGORITHMS
The novel flexible synchronous parallel (FSP) framework is intro-
duced by discussing three key problems. We first present FSP (Sec-
tion 3.1) with a theoretical guarantee on algorithm convergence

(Section 3.2). Because the flexible barrier can be initiated at any
time, we then discuss how to select a reasonable barrier interval in a
recursive way (Section 3.3).

3.1 Overview of FSP
FSP is designed to reduce the waiting time in traditional pre-defined
synchronous parallel (PSP) frameworks. Under FSP, fast workers
can perform more useful computations to accelerate convergence,
while the strict convergence feature as provided by existing PSP
frameworks, can be still guaranteed.

The waiting time in PSP is mainly caused by its built-in pre-
defined barriers. Before running EM iterations under PSP, all work-
ers pre-define barrier locations by assigning workloads in E-step per
iteration, like processing every local data point (full-batch EM) or
some block Bj (mini-batch EM). A global barrier is passively formed
when all workers have completed pre-assigned workloads, which is
very sensitive to stragglers. Suppose that three workers are used. As
demonstrated in Figure 1(a), workers possibly reach their individual
pre-defined barriers at different speeds. Fast workers like Worker_1
thereby block themselves to wait for stragglers like Worker_2.

FSP reduces the waiting time by replacing pre-defined barriers
with a new flexible barrier mechanism. Specifically, the coordinator
can actively initiate a barrier by broadcasting a signal. Once receiving
the signal, a worker immediately commits local updates right after
computing the current data point, no matter how many data points
have been processed since the last barrier. Let B̃(t ) be a subset of data
points processed between the (t-1)-th and the t-th iterations. The size
of B̃(t ) indicates the workloads per iteration. Different from the pre-
defined Bj in Eq. (2) under PSP, B̃(t ) varies with iterations as a new
flexible barrier can be initiated at any time. As shown in Figure 1(b),
workers first committing updates, such as Worker_1, only wait for
stragglers, such as Worker_2, to process a single data point at most.
Usually, computing one data point leads to negligible waiting costs.
The coordinator can quickly complete a synchronization operation
and then starts the next iteration. As a result, fast workers spend
more time to perform computations, instead of waiting for stragglers.
Also, the lightweight synchronization barrier can be initiated more
frequently so that more up-to-date parameters are visible for workers.
Both of the two advantages contribute to boosting the performance.

Now we discuss the detailed behaviors of E-step (at each worker)
and M-step (at the coordinator) under FSP. Eq. (3) shows how to
perform the incremental mini-batch EM variant (shown in Eq. (2))
using our flexible barrier.

Firstly, like PSP, workers under FSP share the same parameter
in E-step. This is because M-step cannot be run until all workers
have already committed their local updates at the global barrier.
Computations of E-step, in return, can be continued only when
receiving newly updated parameters from the coordinator.

Secondly, different from PSP, FSP is essentially required to man-
age barrier signals to synchronize workers. Costs incurred by signals
depend on the specific implementation. An active method is that
Coordinator actively establishes a network connection with every
Worker, and then directly modifies the signal status kept in the latter.
Detecting the local signal is cheap and hence we can perform it im-
mediately after processing one data point, to minimize the detection
latency. However, the broadcasting cost increases with the number
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(a) Pre-defined barrier (b) Flexible barrier

Figure 1: Illustration of how to complete a global barrier under
(a) the existing PSP framework, and (b) a new FSP framework
presented in this paper. The dashed line in (b) indicates a flexi-
ble barrier. Besides, the solid arrow line in (a) and (b) indicates
committing local updates ∆ to the coordinator who performs
the parameter update operations.

of Workers. Another method is that Coordinator writes the signal
into a shared distributed file system, such as HDFS [2], to passively
respond the query request from Workers. The broadcasting cost is a
constant but Worker must carefully select a query frequency because
reading data on HDFS incurs network costs. Currently, we employ
the active method, since the broadcasting cost can be tolerated in a
moderate size cluster based on our tests.



E-step: Continuously sample Xi and add it into B̃(t ) :

Set s(t )i (Zi ,Xi ) and ∆s
(t )
i as Eq.(2).

If a barrier signal is received :
Pause local computations.

Commit ∆s(t )i , Xi ∈ B̃
(t ) and wait for θ (t ).

M-step: Initiate a barrier signal.

Collect every available ∆s
(t )
i and then :

s(t )=s(t−1)+∆s(t )i , Xi ∈ B̃
(t ).

Set θ (t ) as Eq.(2) and then broadcast it.

(3)

Last but not least, FSP decouples the global barrier and the policy
of managing local data on workers. That provides opportunities to
design an efficient fault-tolerance mechanism as described below.

• Coordinator failure: In fact, under FSP, any worker can act as
a coordinator since parameters anywhere are identical. When the
worker where Coordinator resides fails, another one can be selected
to immediately play the role of new Coordinator by notifying sur-
viving workers the change, which tolerates the single point of failure.
Meanwhile, the failed worker as a worker failure will be restarted
on standby machines as described later.

•Worker failure: When any worker fails, it can be restarted and then
continue computation. A failure preprocessing phase is required
to schedule the restarted worker, initialize runtime configurations,
reload input data, and so on, which is from the point when a fail-
ure is detected to the point when the restarted worker starts local

computation. During the preprocessing phase, no update is com-
mitted. Thus, in PSP, M-step cannot be run because Coordinator
cannot receive updates from all workers. However, for FSP, we re-
gard the failed worker or the restarted worker as a straggler without
any progress. Then EM computations on Coordinator and surviving
workers can be continued without any pause. EM algorithms can
still converge to the correct solution because the restarted worker
definitely commits updates after the preprocessing phase. This is
urgently required because preprocessing usually tasks too much time,
especially when using today’s public cloud service platforms. These
platforms typically have provisioned spare capacity to meet natural
demand fluctuation. It is economically feasible to offer temporarily
spare cloud resources (such as Amazon EC2 spot instances, Mi-
crosoft Azure Batch, and Google preemptible instances) at a lower
price. Yet, these resources are only transiently available as they
may suddenly be utilized in case of a load spike. The revocation
behaviors (failures) may happen frequently. Worse, it is typically
time-consuming to apply for a new spot instance and initialize the
configurations (e.g., installing required Softwares). The frequent fail-
ures and the expensive restarting cost make it significantly important
to continue computation during the preprocessing phase.

3.2 Convergence Analysis
Similar to the traditional PSP framework (Eq. (2)), our FSP frame-
work (Eq. (3)) ensures that each worker shares the same parameter
in E-step. This property can be used to prove that FSP enjoys the
same convergence guarantee with PSP for various EM algorithms.

THEOREM 3.1. Incremental mini-batch EM algorithms under
the FSP framework converge.

PROOF. Convergence guarantee can be proved by showing that
EM computations monotonously increase the objective function
value F (Q,θ ) (Eq. (1)). Towards this end, we prove that each EM
iteration consisting of E-step and M-step, either increases F (Q,θ ) or
leaves it unchanged.

At the m-th iteration from the coordinator view, M-step maxi-
mizes F (Q(m),θ (m))=∑n

i=1 Fi (Q
(m)
i ,θ

(m)) through changing θ (m−1)

to θ (m). This update is based on the global statistics s derived from
the change of Q . In particular, if the Xi is not processed, we as-
sume that its Qi is left unchanged (∆si=0). Obviously, M-step can
monotonously increase F (Q,θ ).

From the j-th worker view, at the tj -th iteration, E-step changes

Fi (Q
(tj+1)
i ,θ (tj )), and hence F (Q,θ ), through changingQ(tj )i toQ(tj+1)

i .
To prove E-step continuously increases F (Q,θ ), we shall prove that
the newly updated Fi is greater than, or at least equal to the value
used in the last M-step, as shown in Eq. (4).

Fi (Q
(tj+1)
i ,θ (tj )) ≥ Fi (Q(m)i ,θ

(m)) (4)

Based on the assumption in M-step, Q(tj )i ≡ Q(m)i . We then re-write
Eq. (4) in the following:

Fi (Q(m+1)
i ,θ (tj )) ≥ Fi (Q(m)i ,θ

(m)) (5)

On the other hand, conditioned on the parameter θ (tj ), we can maxi-
mize Fi (Q(m+1)

i ,θ (tj )) using a Lagrange multiplier [27], subject to∑
zi Q

(m+1)
i (zi ) = 1 and Q

(m+1)
i (zi ) ≥ 0. At such a maximum, we
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have the unique solution that Q̂(m+1)
i (zi ) = P(zi |xi ,θ (tj )), and we

indeed use it to initialize Q(m+1)
i (zi ). Therefore,

Fi (Q(m+1)
i ,θ (tj )) ≥ Fi (Q(m)i ,θ

(tj )) (6)

Because no worker can continue local computation before re-
ceiving the new parameter θ (see Eq. (3)), we can easily infer that
θ (tj ) = θ (m). Based on Eq. (6), we can establish the correctness of
Eq. (5), and hence E-step also increases F (Q,θ ). Together, F (Q,θ )
is monotonously increased as desired. □

Neal et al. [27] formally prove the strict convergence property, i.e.,
monotonously increasing F (Q,θ ) at each iteration, for centralized
EM algorithms. Their proof ignores the discussion on different ver-
sions ofQi and θ , because the sequential model naturally ensures any
update result can be immediately available for the subsequent opera-
tion. Differently, Theorem 3.1 tells us that a global barrier is essential
to guarantee the strict convergence property in distributed environ-
ments. Otherwise, the comparison result between Fi (Q(m)i ,θ

(m)) in

Eq. (5) and Fi (Q(m)i ,θ
(tj )) in Eq. (6) is non-deterministic. This is be-

cause M-step focuses on maximizing the summation F (Q,θ ), instead
of a single Fi (Qi ,θ ). Our FSP framework is thereby different from
asynchronous EM variants where parameters are shared in a totally
asynchronous [30] or a partially asynchronous [19] way. Besides,
each worker in FSP uses a round-robin policy to schedule the update
operations among mini-batches. In this way, every data point can be
sampled during iterations.

3.3 Determining Barrier Interval
Although a flexible barrier can be initiated at any time without losing
the convergence guarantee, the question is that who can trigger this
operation and when? We give the answer in this section.

Requesting a barrier by any worker. Theoretically, a worker can
cycle through local data points before receiving a barrier signal. Be-
cause of unchanged θ within an iteration, computations in multiple
full passes of data are redundant, except the first pass. To avoid
wasting compute resources, any worker who completes a full pass
of data will immediately notify the coordinator, so that the latter can
broadcast a barrier signal.

Tuning the barrier interval η by the coordinator. Frequent barrier
operations make up-to-date parameters visible and then increase
the computation quality, i.e., making great progress per iteration.
However, the flexible barrier is still not free and hence the increasing
synchronization cost decreases the quantity, i.e., iterations executed
per unit time. Identifying a proper barrier interval (η) can balance
the tradeoff between quality and quantity.

A proper η is determined by the coordinator in a recursive way.
The main idea is to compare the change of the objective function
value per unit time under the current interval η and a smaller η

λ ,
respectively. Here λ is the adjusting step size and typically set to 2
(user can specify another value). If the objective value changes faster
under η

λ when compared with η, then η =
η
λ . This process is done

recursively until the comparison result is reversed.
A problem now is how to efficiently make the comparison. If we

run the EM application under η and η
λ to respectively get the accurate

changes, the tuning runtime will be so large that we cannot tolerate

it. A feasible solution is to get one accurately, and then estimate the
other. Usually, over a short period of time, if η keeps invariant, the
objective value is predictable because it varies roughly linearly with
elapsed time. Thus, the change under η is chosen as the estimate
variable. For the accurate one, after finishing the current iteration, we
use η

λ to perform the subsequent λ iterations, and then an objective
value change p̃[ ηλ ]

is accurately computed. p̃[ ηλ ]
is achieved during

the runtime T = η
λ · λ + φ · (λ − 1), because (λ − 1) barriers with

overhead φ per barrier are incurred. Now we estimate the change
under η during T . Let p be the objective value change in the most
recent iteration using η. The estimate change is p̃[η] = T ·

p
η .

Based on the comparison, if p̃[η] < p̃[ ηλ ]
, η
λ is better than η, and

can be further decreased in remaining computations until p̃[η] ≥ p̃[ ηλ ]
.

Now the recursive adjusting process terminates and takes the average
of {η, ηλ } as the optimal interval1. Alg. 1 summarizes the adjusting
process. In fact, a full-batch iteration will be run to initialize the
global statistics s before incremental computations shown in Eq. (3).
The full-batch runtime as the largest interval can be used to initialize
the input value of η in Alg. 1.

Algorithm 1: interAdjusting algorithm
Input :Current interval η, adjusting step size λ, objective

value change p at one iteration and synchronization
cost φ

Output :A proper barrier interval
1 Get accurate p̃[ ηλ ]

by running λ iterations with η
λ ;

2 Compute p̃[η] based on p and φ;
3 if p̃[η] < p̃[ ηλ ]

then

4 interAdjusting(ηλ , λ,
p̃[ ηλ ]
λ , φ);

5 else

6 return η+ ηλ
2 ;

Prior experimental investigations [33] reveal that for mini-batch
EM computations, the batch size that yields the best speedup during
initial iterations is roughly the optimal size in the whole iterations.
Motivated by this, we can fix η after identifying a proper value, if
the compute environment is not changed in subsequent iterations.
When changes are detected, the coordinator can seek another η by
invoking Alg. 1 again.

4 FLEGEL: A FSP-BASED SYSTEM
Now we present Flegel, a memory-based distributed implementation
of our FSP framework (Section 4.1). It exposes high-level APIs to
users for easily implementing various EM algorithms (Section 4.2),
and employs a new termination check mechanism to automatically
detect the algorithm convergence (Section 4.3). Further, Flegel can
be generalized to other machine learning algorithms such as Stochas-
tic Gradient Descent (SGD) (Section 4.4).

1Although a further recursive comparison between η and
η+ ηλ

2 computes a more proper
interval, the performance improvement is not significant based on our tests. Thus, we
simply terminate the recursion to reduce the tuning cost.
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4.1 Design of Flegel
Architecture: Figure 2 gives the overview architecture of Flegel,
which employs a widely used Master-Slave design consisting of a
Master machine and K Slave machines. Master is in charge of slaves,
including monitoring their healthy status and being aware of the
load variation on the cloud. It also responds concurrent requests of
running EM algorithms submitted by users, and then manages jobs,
such as notifying a job to tune its barrier interval η.

The execution of one job is divided into several workers which
are scheduled onto different slaves. Before computations, input data
points are also divided into partitions, each of which is kept on a
worker as data table so that they can be processed in parallel. Data
table consists of a series of triples (point id, value Q , and property
information info.). Currently, we use a range partition policy [1].
Typically, one of these workers is selected as the coordinator to main-
tain parameters, while others store a copy. The coordinator updates
parameters and then synchronizes all local copies. In particular, for
algorithms with millions of parameters, one or more workers on
physically separate machines can be selected as the coordinator for
efficiently updating parameters.

Figure 2: Architecture of Flegel

Execution of an EM algorithm on Flegel: Algorithm 2 and Algo-
rithm 3 respectively summarize the execution of Coordinator and
Worker. Once Worker receives θ from Coordinator, the EM compu-
tation starts (Line 6 in Alg. 2 and Line 4 in Alg. 3). First of all, a
full-batch iteration is performed to initialize data point values (i.e.,
Qi ) using θ0 (Lines 12-13 in Alg. 2 and Lines 4-8 in Alg. 3), so
that in subsequent computations, the efficient incremental iteration
can be run (Lines 6-14 in Alg. 2 and Lines 10-27 in Alg. 3). Note
that Alg. 2 leaves out several details for synchronous barrier inter-
val (η) selection (Alg. 1), as well as details specific to detecting
convergence, i.e., terminationCheck() (Section 4.3).

Lastly, in Alg. 3, we show how to detect a full pass through local
data so that the worker can trigger a global barrier. Towards this end,
each worker marks the beginning position of a new iteration, i.e.,
resetting a variable w to zero (Lines 12 and 26). Note, that if the
marked position is reached again before the next barrier happens,
then a full pass of data is done (Line 14).

Algorithm 2: Coordinator algorithm

1 Initialize parameter θ (0);
2 Initialize synchronous barrier interval η to +∞;
3 Initialize iteration counter t to 1;
4 Initialize statistics vector s (0) to 0;
5 while terminationCheck() is False do
6 Broadcast θ (t−1);
7 //Perform full-batch computations under PSP if t=1;
8 if t > 1 then
9 Update η if necessary;

10 Sleep for η milliseconds;
11 Broadcast signal_barrier to initiate a barrier;

12 Aggregate statistics from workers to update s (t );
13 Compute θ (t ) based on s (t ) and θ (t−1);
14 t ← t+1;

15 Broadcast signal_termination to terminate computations;

4.2 APIs
We illustrate the programming APIs used in Flegel in Figure 3. The
function of initParameter() describes about how to initialize pa-
rameter θ (0) as the input of the 1st iteration. updateDataPoint() is
responsible for computing a given data point based on parameters
updated in the previous iteration, and then returning an aggregator
containing the change of local statistics which can be immediately
accumulated by invoking aggregate(). aggregate() will be called
again at the flexible barrier to aggregate reports from all Workers
to get global statistics. After that, we can update parameters us-
ing updateParameter() specified by users. The terminationCheck()
function tells Flegel about whether or not to terminate iterations.

Figure 3: APIs provided by Flegel

4.3 Termination Check
The default termination check implementation is to set the maximum
number of iterations, but users can override this function to meet
their own requirements. One choice is to set an ideal objective value
prior to computation. Then the convergence point is reached if the
newly computed objective value based on aggregator is above or
below the pre-defined target.

Another widely used alternative is first computing the difference
between two consecutive objective values, and then terminating
iterations if the difference is less than a given threshold. An important
problem here is that the barrier interval in FSP is unknown prior to
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Algorithm 3: Worker algorithm

1 FIFO queue dataQ← loadData();
2 Initialize the change of local statistics ∆s to 0;
3 //Perform full-batch computations under PSP;
4 Get θ from Coordinator;
5 foreach Xi in dataQ do
6 Compute ∆si based on Xi and θ ;
7 ∆s ← ∆s + ∆si ;

8 Commit ∆s and then reset it to 0;
9 //Perform mini-batch computations under FSP;

10 Get θ from Coordinator;
11 Initialize signal to signal_continue;
12 Initialize the mark w to 0;
13 while signal is not signal_termination do
14 if w equals the size of dataQ then
15 Notify Coordinator to initiate a barrier;
16 Wait for a new signal;

17 else
18 Remove Xi from the head of dataQ;
19 w ← w + 1;
20 Compute ∆si based on Xi and θ ;
21 ∆s ← ∆s + ∆si ;
22 Add Xi to the tail of dataQ;

23 Update signal if a new one has already been received;
24 if signal is signal_barrier then
25 Commit ∆s and then reset it to 0;
26 Reset w to 0;
27 Get θ from Coordinator;

28 Dump computation results;

running a job. An extremely short interval, of course, leads to a small
variation and hence a false-positive check result, — which triggers
an abnormal termination. We alleviate this problem by decoupling
termination check and parameter update. The check interval is set
to the runtime of performing a full pass computation over data on
the slowest worker, regardless of the update interval η. Hence, a big
difference can be provided for the terminationCheck function.

4.4 More Machine Learning Algorithms
Besides EM, Flegel also supports other machine learning algorithms.
The general goal of machine learning is to refine a model (θ ) by
iterating over input data (X ), so as to perform future predictions over
new data. The refining quality is measured by a loss function f (θ ) =
1
n
∑n
i=1 Fi (xi ;θ ), where n = |X |, xi ∈ X , and Fi (xi ;θ ) indicates the

loss w.r.t. xi . This is achieved using a stochastic optimization policy
with two steps at each iteration: 1) computing a stochastic gradient
∇Fi (resembling the distribution of unobserved variable Qi ), and
2) updating parameter θ based on ∇Fi . Taking Stochastic Gradient
Descent (SGD) as an example, its mini-batch variant updates θ by

θ (t ) = θ (t−1) − α 1
|B |

∑
xi ∈B
∇Fi ,

where α is the learning rate or step size and B is a batch of data points
sampled between two inserted flexible barriers in Flegel. Similar to

the EM implementation, the two steps can be performed in E-step
and M-step, respectively.

Logistic Regression (LR): We next use LR to show that Flegel
is also applicable to SGD. Each data point x̄i ∈ X contains d
attributes with one additional value yi , that is, x̄i = {xi ,yi } =
{{xi1,xi2, ...,xid },yi }. Any yi has a boolean domain {0, 1}. LR on
input data X returns a function P parameterized using a vector θ ,
which predicts yi = 1 with probability

P(xi ) =
1

1 + exp(−xTi θ )
The optimal θ minimizes the loss function

F (xi ;θ ) = (yi − 1) log(1 − P(xi )) − yi log P(xi ),

and each dimension θ
(t )
k of θ can be refined iteratively by

θ
(t )
k = θ

(t−1)
k − α 1

|B |
∑
xi ∈B

∂

∂θk
F (xi ;θ (t−1)), 1 ≤ k ≤ d

In Flegel, X is partitioned onto workers and stored in data table
(shown in Figure 2), while the weight vector θ is the shared parameter
kept in the coordinator. Specifically, val in data table is extended to
store the stochastic gradient vector ∇Fi and the yi value, i.e., (∇Fi ,
yi ). At the very beginning of computation, initParameter() first gives
some initial guess of θ . updateDataPoint() then computes ∇Fi by
∂

∂θk
F (xi ;θ (t−1)) given input data point x̄i and the parameter θ . All

gradients are accumulated by aggregate() and finally averaged to
update θ in updateParameter().

In the similar way, Flegel also supports other SGD based applica-
tions, such as Matrix Factorization [40] and Support Vector Machine
(SVM) [11]. In future, we will also investigate whether our proposal
can be used in iterative graph processing systems [24, 34, 39].

5 PERFORMANCE STUDIES
We conduct extensive experiments in this section. The general ex-
perimental details are given below:

Frameworks for comparison: We analyze the performance of our
basic Flexible Synchronous Parallel framework (FSP) where the
barrier interval is simply fixed as runtime of the first full-batch itera-
tion, and its improved version (smartFSP) which smartly computes
a proper interval. We compare the two solutions against traditional
Pre-defined Synchronous Parallel framework (PSP) which performs
full-batch computation on every iteration, as well as the up-to-date
mini-batch variant (miniPSP) [41] with an automatically computed
batch size. All frameworks are implemented on Flegel based on Java,
in order to make an end-to-end performance comparison.

Experimental cluster: Our cluster consists of 32 physical machines
(slaves) with one additional master machine connected by a Gigabit
Ethernet switch. Each machine is configured with 8 cores (Intel Core
i3-2100, 3.1GHz) and 8GB of RAM, running on top of Red Hat
Enterprise Linux 6.0. Unless otherwise specified, 16 workers are
used for a given EM job, and further, the fair worker-scheduler in
Flegel ensures that one machine runs one worker at the same time,
to avoid possible resource contention.

EM algorithms and datasets: We test three representative EM
applications, namely, K-means, Fuzzy C-Means (FCM) [17], and
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Gaussian Mixture Model (GMM) [27, 41] to explore the perfor-
mance features of all tested frameworks. K-means and FCM are
tested over publicly available datasets MASS2 and HIGGS3 from
UCI Machine Learning Repository, while GMM is run on synthetic
datasets generated in a random manner, as shown in Table 1.

Table 1: Datasets Summary

Algorithms Datasets Points Dimensions

K-means/FCM
MASS 7,000,000 27
HIGGS 11,000,000 28

GMM
Synth-D 5,000,000 40
Synth-P 10,000,000 20

Because K-means has been introduced in Section 2, now we
present the detailed implementation of FCM and GMM.

• FCM: FCM as a “soft” clustering variant, allows Xi to be assigned
into total k clusters with a k-dimensions weight vector wi , where

wi j =
1∑k

l=1(
| |Xi−µθj | |
| |Xi−µθl | |

)
2

q−1

,

and q is a user-specified fuzzy factor (q > 1 and here we set it to
1.1). The objective function is given by:

f =
k∑
j=1

n∑
i=1

w
q
i j | |Xi − µθ j | |

2.

Now, in E-step, Q(t )i (zi = j) = wi j . Like K-means, the two statistic
vectors S and C are defined as Sj =

∑n
i=1w

q
i jXi , and Cj =

∑n
i=1w

q
i j .

When wi j is changed into w
′
i j , S and C are updated incrementally:

Sj = Sj +
(
(w ′i j )

q − (wi j )q
)
Xi ; Cj = Cj +

(
(w ′i j )

q − (wi j )q
)
.

•GMM: The goal of GMM is to specify how likely a given data point
Xi is generated from the j-th Gaussian distribution with the mean c j
and covariance matrix Σj , where j ∈ {1, 2, ...,k}. θ j = (c j , Σj ). EM
maximizes the objective function:

f =
1
n

n∑
i=1

log
( k∑
j=1

w jP(xi |θ j )
)
,

wherew j stands for a weight value. P(xi |θ j ) indicates the probability
of generating Xi from the j-th Gaussian distribution. Let d be the
cardinality of Xi . Then P can be computed below:

P(xi |θ j ) = (2π )−
d
2 · |Σj |−

1
2 · e−

1
2 (xi−c j )T ·Σ−1

j ·(xi−c j ).

The normalized probability value γi j is given by:

γi j =
w jP(xi |θ j )∑k
l=1wlP(xi |θl )

.

The statistics include three k-dimensions vectors, Ŝ , S andC, and are
computed below:

Ŝj =
n∑
i=1

γi jX
2
i ; Sj =

n∑
i=1

γi jXi ;Cj =

n∑
i=1

γi j .

2http://archive.ics.uci.edu/ml/datasets/HEPMASS, real dataset
3http://archive.ics.uci.edu/ml/datasets/HIGGS, produced by Monte Carlo simulations

The workload of E-step is to first compute the new value of γi j ,
γ
′
i j . Let δ = (γ ′i j − γi j ), E-step then updates the statistics by: Ŝj =

Ŝj +δX
2
i , Sj = Sj +δXi , andCj = Cj +δ . Finally, M-step recomputes

parameters by w j =
Cj
n , c j =

Sj
Cj

, and Σj =
Ŝj
Cj
−

S2
j

C2
j
.

The testing configurations of EM algorithms under PSP are given
below. (1) For K-means, we select the top-100 (k=100) data points in
ascending order of ids as initial clusters and then run 100 iterations.
(2) For FCM and GMM, because of the heavy workload in E-step,
we decrease the number of iterations to 50, and set k to 10 and 5,
respectively. In particular, the input clusters of FCM are initialized
using the same way with K-means. However, for GMM, random
clusters are used to avoid the divide-by-zero exception. miniPSP,
FSP and smartFSP, employ the same initialization policy with PSP,
but a different termination check method. Specifically, they terminate
iterations when f is over (GMM) or below (for K-means and FCM)
the corresponding target achieved in PSP. Hence, any EM algorithm
under all compared frameworks will converge to the same solution,
so that we can make a fair comparison.

Evaluation metrics: Two metrics are evaluated in experiments, run-
time and objective function value. Runtime is defined as the elapsed
time from the point when computation starts to the point when
an algorithm converges. The overheads of loading data and dump-
ing results are excluded since they are the same for all compared
frameworks. Objective function value, i.e., f , has been given when
introducing tested algorithms. In particular, f needs to be minimized
for K-means and FCM, but maximized for GMM.

Experiment design: We experiment with injected and naturally-
occurring straggler patterns. Generally, stragglers are caused by
at one or more factors: (1) different hardware configurations; (2)
imbalanced data partitioning; (3) background operating system ac-
tivities; (4) garbage collection; (5) failure recovery; and (6) im-
balanced distribution of workers among physical machines. Users
encounter the last scenario when running multiple jobs concurrently.
The worker-scheduler fairly schedules workers of a job based on
available resources per machine. However, one job (and its workers)
may terminate at any time due to convergence. That leads to an
imbalanced distribution of workers for remaining running jobs. In
particular, workers on congested machines become stragglers.

It is hard to accurately evaluate the impact of these real-world
factors on runtime. Thus, like Ref. [18], we first assume that Flegel
suspends computing threads on user-specified workers for τ mil-
liseconds every 1,000 data points processed, so that we can simulate
the slow, straggling workers. In this way, a deep performance analy-
sis is made (Sections 5.1-5.4). We also test all frameworks in two
real scenarios: failure recovery and imbalanced worker distribution
(Section 5.5). The former also demonstrates that Flegel can effi-
ciently tolerate failures. Finally, we test the scalability of Flegel
(Section 5.6) and compare our optimal solution smartFSP against
the asynchronous framework (Section 5.7).

5.1 Impact of the Straggling Parameter τ
We first evaluate the performance scalability by varying how much
a straggler slows down the overall progress, i.e., varying τ from 0
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to 6 milliseconds. Figure 4 shows the runtime of compared frame-
works for three algorithms over different datasets. In all testing
cases, smartFSP always works best. In particular, it outperforms
PSP, miniPSP, and FSP by up to 4.63X (from 1.34X), 3.45X (from
1.02X), and 1.79X (from 1.18X), respectively. That mainly stems
from the flexible barrier mechanism where fast workers do not wait
for stragglers, and the smartly determined barrier interval.
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Figure 4: Runtime of different frameworks when varying how
much a straggler slows down the overall progress (quantified by
τ · #Points

1000·#Worker ). X-axis indicates the suspending time per 1000
data points, i.e., τ (millisecond).

PSP and miniPSP essentially get performance degradation be-
cause of increasing waiting costs caused by the slowest worker.
However, benefitting from frequently running M-step, miniPSP con-
verges faster than PSP, and even beats FSP, particularly when τ
is small (FCM in sub-figures (c)-(d)) and/or underlying point data
updates are very time-consuming (GMM in sub-figures (e)-(f)).

5.2 Impact of Number of Stragglers
With fixed τ = 6 milliseconds, we explore the performance variation
when varying the number of stragglers.

As plotted in Figure 5, the performance gap between FSP and
PSP (also smartFSP and miniPSP) narrows down with more strag-
glers. Specifically, we see that the algorithm performance under

PSP/miniPSP does not change significantly, because the synchro-
nization cost is always dominated by the slowest worker, regardless
of how many workers are slow (#≥1). On the other hand, the con-
vergence runtime of FSP/smartFSP increases with more stragglers,
because updates on stragglers are not so many as those on normal,
fast workers. Even so, the speedup of our smartFSP compared with
PSP/miniPSP is still up to 2.90X/2.38X in our worst testing case
( 6

16 % = 37.5% workers are slow).
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Figure 5: Runtime of different frameworks when varying the
number of stragglers (τ = 6 milliseconds).

One observation we can make is that the performance of FSP
drops significantly in some cases, such as Figure 5(a) and Figure 5(d),
when compared with Figure 4(a) and Figure 4(d), respectively. This
may be because intermediate results from data points residing on
stragglers are greatly important for convergence. Reducing the num-
ber of updates on these points forces K-means/FCM to make a long
detour to converge. smartFSP, however, is able to largely allevi-
ate the runtime degradation via its interval adjusting component —
which takes convergence speed into consideration when computing
the proper interval.

5.3 Verifying Optimal Barrier Interval
Now we design experiments to answer the following questions:
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• Effectiveness: how likely can smartFSP seek the optimal
barrier interval η?
• Efficiency: how much time does smartFSP take to seek η that

is optimal or close to optimal?
All tests are run with τ = 6 milliseconds and 1 straggler.

Effectiveness: To find a real optimal interval, we repeatedly run
an EM algorithm and we manually set the barrier interval every
time. Figure 6 reports the speedup normalized to FSP against the
ratio of manually chosen interval η in smartFSP to the runtime of a
full-batch iteration.
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Figure 6: Effectiveness of seeking optimal η. X-axis indicates the
ratio of η to the runtime of a full-batch iteration. Arrows point
out the optimal intervals computed by smartFSP.

With the ratio being increased, we can easily find that the speedup
first increases rapidly and then gradually decreases in most cases.
This can be explained by the tradeoff between expensive synchro-
nization costs incurred by frequent barriers (small interval) and slow
convergence speed due to infrequent barriers (large interval). As
shown in Figure 6, smartFSP can roughly hit the “sweet spot” by its
online adjusting component. Note that the speedup curve varies with
the specific EM algorithm and dataset. Thus, it is impossible to get
an one-fit-all solution to find the “sweet spots” by offline analysis
used in Ref. [41].

Efficiency: To understand why smartFSP performs better, we further
study the efficiency of identifying the optimal η by showing the
variation of runtime per iteration. Figure 7 shows the results of some
testing cases. We omit other cases for brevity since they exhibit the
similar performance. All sub-figures demonstrate that smartFSP can
quickly identify a proper η in early iterations.

5.4 Empirical Validation of Convergence
Besides a formal convergence proof in Section 3.2, now we empiri-
cally validate that our proposals are applicable to tested algorithms.
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Figure 7: Efficiency of identifying the roughly optimal η.

We first test the correctness and then analyze the distribution of
contributions made to convergence by each worker.

Correctness: The correctness is validated by giving the objective
value variation during iterations. Using the same settings in Sec-
tion 5.3, Figure 8 shows objective value vs. time plots achieved
by continuously monitoring the computation progress at sampled
time instances. Clearly, all sub-figures reveal that our proposals
monotonously decrease or increase the objective value, like tradi-
tional PSP and miniPSP. Hence, algorithms under our Flegel can
converge to the correct solution, and more importantly, they exhibit
a faster convergence speed than existing implementations.

Data bias w.r.t. convergence: We further show that in Flegel, all
workers evenly contribute to refining the objective function value,
even though some of them are straggling. Towards this end, after an
algorithm converges, we report two metrics for each worker: 1) the
number of completed full passes over local data (passes), indicating
the computation speed; and 2) the total accumulated changes (delta)
with respect to the objective value, indicating the contribution made
by this worker to convergence. We test all of the three algorithms
using two different scenarios w/o and w/ injected stragglers (τ = 6
milliseconds and the number of stragglers is 6), so as to demonstrate
the metric variation.

Sub-figures (a) and (b) in Figures 9-11 respectively show the
comparison results. We observe that when changing τ from 0 to 6,
although different workers proceed at different speeds, the objec-
tive function value does not skew in the favor of fast workers that
complete more passes than stragglers. This is not surprising because
data points on stragglers are always updated according to up-to-
date parameters pushed by the coordinator. That means although
the number of updates (or passes) decreases, the contribution per
update largely increases. As a result, the total contribution (delta)
from stragglers is still significant.
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Figure 8: Convergence of FSP and smartFSP
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Figure 9: K-means on HIGGS
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Figure 10: FCM on MASS

5.5 Evaluation in Real-world Environments
As an indication of how different frameworks scale in real environ-
ments, Figure 12 depicts the impact of failure recovery and imbal-
anced worker distribution. We show that FSP can offer a comparable
performance to miniPSP, but the former does not require complex
offline analysis to compute a mini-batch size. Further, smartFSP
always has superior performance to all competitors.
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Figure 11: GMM on Synth-P

Failure recovery (case-1): In this suite of experiments, there are
total 16 workers. After running an EM algorithm, we manually kill
one of them at the 10th and the 30th iterations to simulate two
worker failures. Over the period of failure preprocessing, both PSP
and miniPSP suspend computation. However, FSP and smartFSP
can continue computation without any pause. Note that for all frame-
works, failed workers are restarted and then continue local computa-
tion after the preprocessing. Sub-figures (a), (c), and (e), report the
convergence runtime. miniPSP beats FSP for GMM because the fast
convergence speed caused by fine-grained barriers offsets expensive
synchronization costs. However, our improved smartFSP runs up to
1.88 times faster than miniPSP.

Imbalanced worker distribution (case-2): To simulate the imbal-
anced distribution, we submit two jobs to Flegel concurrently using
16 physical machines: Job-1 with 16 workers and Job-2 with only 1
worker. Because of the fair scheduler, one machine runs two work-
ers, while others run a single one. In particular, Job-2 runs K-means
on a synthetic dataset (60 thousand points, 50 attributes per point)
produced in a random manner. Sub-figures (b), (d), and (f) report the
performance of Job-1 for different algorithms. In comparison with
miniPSP, the flexible barrier in FSP brings marginal benefit, and
even slight performance degradation due to coarse-grained barriers.
While, smartFSP beats miniPSP by a factor of 1.58 at most.

5.6 Scalability
We test the scalability of different frameworks with τ = 6ms and
1 straggler. For K-Means and FCM over public datasets, we vary
the total number of workers from 8 to 32. Figure 13 shows that the
runtime decreases gradually. This makes sense because the size of
local data points on each worker shrinks linearly when increasing
the number of workers. For GMM on synthetic datasets, we first run
it on Synth-D using different cluster sizes (Figure 14(a)). Then we
generate 4 datasets from 5 million points to 20 million points using
the same dimension number 40. Figure 14(b) demonstrates the linear
performance change of GMM on a cluster with 16 workers.

5.7 Comparison with Asynchronous Framework
We finally implement asynchronous EM computation on Flegel by
completely removing the global barrier [10, 13]. We then perform an
end-to-end comparison between it and our smartFSP, since the latter
has been shown to give better performance than other synchronous
frameworks in previous experiments. Figures 15-17 plot objective
value against time for the three tested algorithms by setting τ = 0 ms
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Figure 12: Performance in real-world environments.
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Figure 13: Scalability (K-Means and FCM)

and 6 ms (with one straggler) respectively. Note that smartFSP can
automatically identify a proper barrier interval to support mini-batch
computation. While, for asynchronous EM, we manually set the
number of batches on each worker, i.e., changing the batch size, to
explore the performance features.

There is no doubt that the asynchronous framework largely miti-
gates synchronization costs, but this benefit usually cannot translate
to a fast convergence speed with the same output parameter (e.g.,
K-means and FCM in Figures 15 and 16). This is because asyn-
chronous update on the global parameter makes some workers use
stale local copies, which incurs errors. It is extremely difficult to
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Figure 15: Kmeans on HIGGS
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Figure 16: FCM on MASS
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Figure 17: GMM on Synth-P

analyze the convergence of asynchronous EM algorithms prior to
computation, and indeed such implementations can readily diverge
(like K-means in Figure 15). Thus, the asynchronous framework is
not a preferred solution even though it works well in some cases
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(e.g., GMM shown in Figure 17). In contrast, our proposals provide
enough flexibility for EM-based algorithms to be highly efficient.

Another observation we find is that for asynchronous K-means, a
small batch number (i.e., a large batch size) works well. However,
this does not hold true for FCM. Selecting a proper batch size is also
a big challenge for users.

6 RELATED WORK
Many representative techniques have been developed to optimize
centralized EM algorithms. Today’s distributed computation systems
also enable scalable EM implementation efforts in the big data era.
Below, we review these existing works from the two perspectives to
highlight our contributions.

Centralized EM optimizations: Conventional efforts have made
significant advancements in three different but complementary direc-
tions. The most important branch is to transform full-batch update
into mini-batch variant for efficiency [27, 31, 33]. Some important
problems have been deeply analyzed, such as convergence guaran-
tee and incremental implementation. In particular, our convergence
proof is based on the work of Neal et al. [27], but goes further. Specif-
ically, we prove that in distributed environments, the convergence
can be guaranteed by sharing the same parameters among workers.
Pre-assigning workerloads to workers is thereby unnecessary. The
other two branches include carefully selecting initial input [9] and
priority computations (e.g., prioritizing data points in E-step [33] or
parameters in M-step [14, 25]). We can easily plug all of the three
techniques into our system Flegel.

Distributed EM implementations and the straggler problem: The
input training data are rapidly growing in size. In order to efficiently
run machine learning algorithms including EM, there are a flurry of
efforts targeted at developing distributed solutions. Early researchers
[3, 21, 36, 41] pioneer in algorithm implementations on top of bulk
synchronous systems, like Hadoop [2] and Spark MLlib [4]. In
particular, Jiangtao et al. [41] discuss how to automatically com-
pute a proper batch size in distributed environments for mini-batch
computation. Such synchronous implementations provide strict con-
vergence guarantee, but suffer from stragglers due to the global
pre-defined barriers. Existing works tackling this problem basically
fall into three categories: migration and backup, fine-grained syn-
chronous, and asynchronous.

• Migration and backup: A straightforward solution is to dynami-
cally migrate data from busy workers to idle workers to rebalance
workloads [6, 15, 16]. Further, to reduce the expensive data migra-
tion costs, Harlap et al. [18] propose to pre-replicate data on a group
of selected workers, so as to quickly migrate computation tasks. In
addition, Hadoop and Spark [2, 4] support speculative execution by
running straggling workers redundantly and using the output from
the first successful run. Clearly, the two backup policies require
additional memory and compute resources. Chen et al. [29] design
another backup implementation. By setting a threshold b, the system
skips synchronizing the slowest (called “backup”) b workers, i.e.,
dropping updates from them. Different from that, our FSP can fully
utilize such updates since they can also significantly contribute to
convergence based on our tests in Section 5.4.

• Fine-grained synchronous systems: Confining the barrier operation
to a subset of workers can perform fine-grained synchronous com-
putation, which naturally reduces the number of workers blocked
by stragglers. Specifically, the general dataflow system, Naiad [26],
achieves this by pre-notifying a receiver that all data it requires have
been ready. Then a receiver can start local computation without
global barriers. Kadav et al. [20] further design an acknowledge-
ment mechanism to avoid write conflicts on data kept at the receiver
side, especially when the sender broadcasts data quickly. However,
the fine-grained barrier is still pre-defined, which inevitably incurs
waiting overheads for workers in the same subset.

• Asynchronous systems: Several works [5, 10, 13, 30, 42] aim at
asynchronous computation without any barrier, such as TensorFlow
[5] and Hogwild [30]. Although removing pre-defined barriers can
solve the straggler problem, these systems potentially lose the con-
vergence guarantee [19]. Recently, some researchers have attempted
to hit a “sweet spot” between synchronous and asynchronous com-
putation via a partially asynchronous mechanism. Altinigneli et al.
[7] explore to run EM using GPU. Each processing unit can asyn-
chronously update locally cached parameters until they converge.
Subsequently, a global barrier is run to exchange intermediate up-
dates among units. Similarly, Ho et al. [12, 19, 35] design a stale
synchronous parallel framework where workers are allowed to use
stale parameters got from the coordinator, but the staleness is user-
controlled. However, specifying the staleness bound empirically
is difficult. Worse, the objective function value may not change
monotonously during the training process since workers (units) use
inconsistent parameters to some extent. Besides, they still suffer
from stragglers when updates are globally exchanged or the stale-
ness bound is exceeded.

To summarize, different from works mentioned above, our flexible
barrier mechanism provides the strict convergence guarantee as
synchronous systems, while solving the straggler problem without
any additional resource requirement.

7 CONCLUSION
This paper investigates the problem of EM computation. We pro-
pose a new flexible synchronous parallel framework that enables
a coordinator to actively synchronize workers when necessary. In
this way, fast workers can perform more useful computations, in-
stead of blocking themselves to wait for stragglers, which speeds
up convergence. A built-in adjustor dynamically collects execution
statistics and then automatically computes a proper synchronous in-
terval to gain optimal performance. Extensive experiments show that
our proposals consistently outperform the state-of-the-art solutions.
In future work, we plan to investigate whether the flexible barrier
mechanism can be used in iterative graph algorithms.
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