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Abstract In recent year, many large-scale iterative graph computation systems such
as Pregel have been developed. To ensure that these systems are fault-tolerant, check-
pointing, which archives graph states onto distributed file systems periodically, has
been proposed. However, fault-tolerance remains to be challenging because the whole
data set is archived with a static interval, rendering underlying graph computations to
entail I/O-costs in terms of disk and network communication. Motivated by this, we
first propose to dynamically adjust checkpoint intervals based on a carefully designed
cost-analysis model, by taking the underlying computing workload into account. Fur-
thermore, for algorithms that can be restarted from any point during computations, we
prioritize graph states and then checkpointing can be performed with selected data,
instead of the entire dataset, to reduce archiving overhead while simultaneously guar-
anteeing the failure recovery efficiency. Finally, we conduct extensive performance
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studies to confirm the effectiveness of our approaches over existing up-to-date solu-
tions using a broad spectrum of real-world graphs.

Keywords Iterative graph computations · Fault-tolerance · Checkpointing

1 Introduction

The big data era is coming with strong and ever-growing demands on iterative graph
computations in the cyber world, and many distributed systems have been developed
for efficiency, mainly including Pregel [17] and its variants [10–12,16,19,21,26], such
as Hama, Giraph, GPS, GraphLab, and GraphX (on top of Spark [3]). Because of the
frequent machine failures in cloud environments, fault-tolerance is crucial to these
Pregel-like systems [17], especially for algorithms with a large number of iterations.
For example, the connected components algorithm over a web graph requires up to
744 iterations to fully converge [9].

Generally, a prominent fault-tolerance solution enables the system to efficiently
recover from failures by optimizing the re-computation cost, while simultaneously
reducing the impact on failure-free (i.e., no failure occurs) performance as much
as possible. This is typically achieved by a checkpointing method [17], which is
widely used in Pregel-like systems. The basic idea is that data are archived onto
a distributed file system underneath (e.g., HDFS) periodically, and hence any failure
can be recovered by rolling back the whole computing states (including failed ones and
surviving ones) to the most recent available point, instead of recomputing from scratch.
Unfortunately Pregel-like systems usually suffer high performance degradation during
failure-free execution, which is up to 8–31x if the checkpointing interval is set as 1
[18]. This is because that the traditional checkpointing implementation requires to
archive a large volume of data, including vertex states, messages and edges. The goal
of our work is thereby designing new solutions to reduce the expensive overhead.

Challenges Recently, there are several techniques to deal with the overhead issue, all
of which are far from ideal. First, the range of checkpoint data can be reduced to vertex
states only by separating the logic of vertex update and message generation [29]. But
the volume of vertices is still considerable based on our tests. Second, data can be
archived in an unblock way to partially overlap underlying graph computations and
I/O-accesses [28]. However, the experiment results in [28] show that it does not work
well when remote I/O-requests cost more time than local computations. In another
word, in this scenario, the system is still blocked to wait for expensive writes. Finally,
some efforts are devoted into designing reactive solutions without checkpointing [7,
18,20,25]. Upon failures, lost data can be recovered based on surviving replications
[7,18] or special functions [20,25]. These solutions are not always feasible because
replicating data increases the memory footprint [34] and designing special functions
is a non-trivial task for users [28].

We are also aware that some advanced methods focus on improving the recovery
efficiency resorting to confining re-computations to failed data only and parallelizing
these workloads [17,23,25]. All of them are complementary to our work.
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Our contributions Different from existing work, this paper analyzes features of itera-
tive graph algorithms and then designs two improved checkpointing solutions tailored
for different scenarios, in order to reduce the archiving overhead.

First, a dynamic checkpointing is proposed to archive data with a tunable inter-
val. In many cases, the underlying computing workload is always varying, such as
dynamic PageRank [10], connected components, and shortest paths. This is because
some vertices have converged and will not be involved in subsequent computations,
which dominates the actual runtime per iteration. On the other hand, as far as we
know, all of existing checkpoint-based methods are performed using a static check-
pointing interval. That means the recovery cost, i.e., the cost of recomputing from the
last available checkpoint to the failed iteration, is also changeable, but the archiving
overhead is constant. Obviously, it is not cost-effective when recovery costs less time
than archiving data. In order to balance the tradeoff relationship between them, we
dynamically adjust the interval parameter. Besides, the parameter value in existing
static solutions is empirically given by users. But in our scenario, it is non-trivial since
we need to take the variable workload into account. Fortunately, the historical running
statistics offer sufficient information to build a cost-analysis model. And hence, the
interval can be optimized dynamically.

Second, we design a prioritized checkpointing to further reduce the archiving over-
head. This paper derives insights from two facts. (1) Vertices play different roles in
dominating the convergence progress, i.e., they exhibit different importance [32]. (2)
For some algorithms, such as connected components and shortest paths, the computa-
tion interrupted by failures can be restarted from any point [20,25]. The two properties
open up a new field in fault-tolerance because we can save partial important vertices
only in checkpoint, which potentially reduces the volume of archived data. Motivated
by this, our newly designed solution first automatically prioritizes vertices using static
information such as outdegree in conjunction with dynamically collected data such as
the number of performing updates. Accordingly, we distinguish vertices and archive
selected ones based on a user-specified threshold. Different from existing reactive solu-
tions [20,25], our prioritized method removes the requirement of special functions,
which largely eases the burden of users.

In summary, this paper makes the following contributions:

– We present a novel adaptive checkpointing method to archive data using a tunable
interval. It strikes a nice balance between checkpointing costs and failure recovery
performance by dynamically adjusting the key interval parameter.

– A new prioritized checkpointing method is devised to distinguish the importance
of different vertices for the algorithm convergence speed and then only selected
data are archived to reduce the volume of archived data for efficiency. A priority
computation model is used to make the smart decision when selecting data, which
guarantees the recovery efficiency.

– Both of our two solutions work automatically based on the carefully designed
models, which is feasible and facilitates fault-tolerance for various Pregel-like
systems and different graph algorithms.

Paper organization The remainder of this paper is organized as follows. Section 2
introduces preliminaries about iterative graph algorithms, the fault-tolerance prob-
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lem and the state-of-the-art technique. Section 3 presents our adaptive checkpointing
method and the cost-analysis model, based on analyzing the runtime features of algo-
rithms with dynamic workload. Section 4 describes the details of our prioritized
checkpointing solution and the priority computation model. Section 5 reports exper-
imental studies over real graphs. Section 6 highlights the related work. Finally, we
conclude this paper in Sect. 7.

2 Preliminaries

2.1 Iterative graph computations

We restrict our discussion to a directed graph G = (V, E, w), where V is the vertex
set with |V | vertices and E is the edge set with |E | edges. w is a weight function:
∀e ∈ E, e → w(e). An iterative graph algorithm repeatedly refines each vertex
vi ∈ V by a user-defined update function f , until an explicitly specified condition
is satisfied. This process consists of multiple iterations separated by synchronous
barriers. At the (t+1)th iteration, the workload mainly includes updating every vertex
vi by consuming messages received from its in-neighbors at the previous iteration,
i.e., Mt

in , and sending new messages along outgoing edges (denoted by Γ (vi )) to its
out-neighbors, i.e., Mt+1

out . Mt+1
out will be used at the next iteration. Eq. (1) shows it

mathematically.
(vt+1

i , Mt+1
out ) ← f (vti , M

t
in, Γ (vi )) (1)

Many algorithms follow the expression in Eq. (1), such as PageRank [4] and its
variants, Katz metric [14], simulating advertisements [15], connected components, and
shortest paths. In the following, we give more details about simulating advertisements
and shortest paths since they are used as example algorithms in our experiments
(Sect. 5). Both of them are terminated when no messages are exchanged.
Simulating advertisements [15] Each vertex represents a person with a list of favorite
advertisements as its value. A user-given vertex is identified as a source and broadcasts
its value to out-neighbors. Subsequently, a received advertisement is either forwarded
or ignored, based on the receiver’s interests. In particular, we use the same computing
logic with [26]. That is, a person only forwards the advertisement that a maximum
number of his/her neighbors have.
Shortest paths By “shortest paths”, we refer to the single source shortest distance
computation [17]. It finds the shortest distance between a given source vertex to any
other one. The source vertex has a distance 0 and then in every iteration, a vertex value
is updated to be the minimum value received from its in-neighbors, if the received
value is lower than its current distance. After updating a vertex, it will immediately
broadcast messages to its out-neighbors by adding edge weights to its new value.

2.2 Fault-tolerance

In distributed environments, some machines may fail during iterations. To tolerate
failures, the most widely used method is checkpointing. That is, the system archives
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data periodically and then the iterative computations can be rolled back to the most
recent available point upon failures. From the perspective of data volume, the up-
to-date technique is to decompose the computing function in Eq. (1) into two parts:
vertex update and message generation, as shown in Eqs. (2) and (3), respectively. In
this way, only vertices are required to be archived [29]. When recovering failures, we
can load archived vertices and then re-execute Eq. (3) to get required messages to
restart computations. In Sect. 5, we compare our proposals with this technique.

vt+1
i ← update(vti , M

t
in) (2)

Mt+1
out ← f (vt+1

i , Γ (vi )). (3)

2.3 A Pregel-like system: HybridGraph

Finally, we introduce a Pregel-like system, HybridGraph [26], since our proposals are
implemented on top of it. Different from memory-resident systems, such as Pregel,
HybridGraph is designed to perform graph computations I/O-efficiently. To this end, it
also uses Eqs. (2) and (3) to handle graph algorithms. Then messages can be generated
on demand of target vertices in a block-centric way, instead of being prepared before-
hand, and consumed immediately. That largely reduces the memory footprint and
hence expensive disk I/Os are avoided. For more details, please refer to [26]. We use
HybridGraph as the underlying framework because it naturally supports the up-to-date
fault-tolerance technique [29] as mentioned in Sect. 2.2 and either its memory-based
engine or disk-based engine has prominent performance when compared with other
existing systems.

3 Dynamic checkpointing

This section describes our adaptive checkpointing solution by discussing three key
issues. First, we analyze the runtime features of iterative algorithms, which is the
motivation of our proposal. Second, we give the details on how to archive data using
a tunable interval. Third, we present the cost-analysis model to decide a reason-
able interval automatically and prove that our solution performs better than existing
work.

3.1 Runtime features of iterative algorithms with dynamic workload

As mentioned in Sect. 2.1, vertex values are refined again and again in iterative
algorithms. In this process, vertices will converge to their fixed points individually
at different speeds. Once a vertex converges, it will not be involved in remain-
ing iterations, to save limited computing resources and network bandwidth. As an
indication of how the workload changes with iterations, Fig. 1 plots the number of
vertices involved in computations and the runtime per iteration, by runningSimulating
Advertisements on a web graphWiki (|V | = 5.7 million, |E | = 130 million, 5 Amazon
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Fig. 1 Analysis of dynamic workload for iterative algorithm (Simulating Advertisements on Wiki)

EC2 c3.2xlarge instances). We only report the statistics of the first 70 iterations since
the trend of the remaining computations is the same with that after the 50th iteration.

We can easily find that after the 10th iteration, only 10% of vertices are involved in
computations, which drops the runtime so much that it is greatly less than the average
archiving time. In this case, frequently saving checkpoints after the 10th iteration is not
cost-effective because recomputing lost iterations is very fast. Most algorithms exhibit
the similar features, including dynamic PageRank [10], Katz metric [14], connected
components and shortest paths.

3.2 Archiving data with tunable checkpointing interval

The basic idea of our adaptive checkpointing is to adjust the checkpointing interval
dynamically. Figure 2 illustrates the difference between traditional static solution and
our solution. Assume that a graph processing job consists of three distributed tasks
and the static interval τ = 5. When task_2 fails at the 18th iteration (t = 18), three
checkpoints have been archived and hence the system can roll back data in all tasks
to the most recent available point, i.e., ck3. That means 3 iterations need to be re-
executed in recovery. Different from that, in our adaptive solution, perhaps only one
checkpoint is saved, i.e., ck1 at t = 7, before failures. Of course we save the overhead
of two checkpoints when compared with the static solution, but the recovery requires
to repeat 11 iterations from t = 7 to t = 18. Obviously, increasing the interval reduces
the I/O-costs, but trades off the time of writing checkpoints with the time required in
recovery. This key issue is solved by our cost-analysis model by collecting historical
information. We will discuss it in Sect. 3.3.

Now we introduce how to integrate the dynamic solution into an existing Pregel-like
system. As shown in Algorithm 1, the key modification is to replace the static check-
pointing judgement logic, i.e., “t MOD τ is 0?”, with our function isCheckpoint ()
(Line 7). isCheckpoint () runs our cost-analysis model described in Sect. 3.3 to decide
whether a checkpoint is supposed to be saved. In order to run this function, we need to
collect some runtime information including the runtime of underlying computations
(Ct

ite, lines 5–6) and overhead of archiving data (Ct
arc, lines 8–9). They are maintained

in two queues, histIteQ and histArcQ, respectively.
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τ τ τ

Fig. 2 Illustration of dynamic checkpointing

Algorithm 1: Dynamic Checkpointing
Input : static checkpointing interval τ

1 initialize histIteQ to record historical runtime of underlying computation
2 initialize histArcQ to record historical runtime of arching data
3 t ← 1
4 while convergent condition is not satisfied do
5 Ct

ite ← runIteration()
6 add Ct

ite into histIteQ
7 if isCheckpoint(histIteQ, histArcQ, τ , t) then
8 Ct

arc ← archiveData()
9 add Ct

arc into histArcQ

10 t ← (t + 1)

11 return

3.3 Cost-analysis model

The main idea behind the cost-analysis model is that the overhead of archiving data is
supposed to be no more than that of recovery. The latter,Crec, is estimated by summing
up the actual iteration runtime Cy

ite since the last checkpoint (i.e., the i th one) location
cki , where (cki + 1) ≤ y ≤ t . On the other hand, we calculate the average cost of
completed checkpoints, C̄arc, as the final value used in judgement, to improve the
accuracy. Eq. (4) shows it mathematically.

C̄arc = 1

i

i∑

x=1

Cx
arc ≤ Crec =

t∑

y=cki+1

Cy
ite (4)

At the very beginning of iterations, C̄arc is initialized to zero and hence Eq. (4)
always returns “TRUE”. On the other hand, when the workload is high, such as at
the 7th iteration in Fig. 1, Cy

ite may be much more than C̄arc. Equation (4) thereby
returns “TRUE”. In both of the two cases, perhaps our solution archives checkpoints
in a higher frequency compared with the static method. To avoid this scenario, we still
need to consider the static interval τ . As the dynamic checkpointing location destroys
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the “MOD” regular expression, we directly compare τ with completed iterations since
the last checkpoint, as shown in Eq. (5)

τ ≤ (t − cki ) (5)

Thus, the main body of isCheckpoint() used in Algorithm 1 is performing the logical
“AND” operation, i.e., Eqs. (4) and (5), to guarantee that the number of checkpoints is
no more than that in the static method, which is proved in the following. Let I denote
the total number of checkpoints archived in our dynamic solution. In contrast, for the
static solution, it is �T/τ�, where T is the number of completed iterations. Lemma 1
then describes that the former is always no more than the latter.

Lemma 1 I ≤ � T
τ
�.

Proof For the static checkpointing, obviously, T = � T
τ
� · τ + ys , 0 ≤ ys ≤ τ . Now,

we analyze the value of I for our dynamic solution. We discuss it in two parts. First,
assume that the dynamic solution is performed with tunable intervals in (m · τ + yd)
iterations, 0 ≤ yd ≤ τ . During these iterations, the actual interval is always no
less than τ . Thus, the actual number of checkpoints is no more than m. Second, the
number of remaining iterations with static interval τ is (� T

τ
� − m) · τ + (ys − yd).

The actual number of checkpoints is thereby (� T
τ
� −m) + (ys−yd )

τ
. Then we can infer

that I ≤ m + (� T
τ
� − m) + (ys−yd )

τ
= � T

τ
� + (ys−yd )

τ
. Because −1 <

(ys−yd )
τ

< 1,
I ≤ � T

τ
� is proved. 	


After that, Lemma 2 gives the saved archiving overhead due to adjusting interval
dynamically. Finally, Theorem 1 compares the overall performance of the two solutions
by considering the archiving cost and recovery cost, where θs/θd is the recovery cost
for the static/dynamic solution.

Lemma 2 The dynamic checkpointing reduces the archiving overhead by (� T
τ
�− I ) ·

C̄arc when compared with the static solution.

Theorem 1 (� T
τ
� − I ) · C̄arc − (θd − θs) ≥ 0.

Proof We prove this theorem by analyzing the performance of our dynamic solution
in the worst case, that is, a failure occurs during iterations where the dynamic interval
is used. Based on Eqs. (4) and (5), the upper bound of θd is C̄arc. Meanwhile, the lower
bound of θs is 0. Thus, for the dynamic solution, the extra recovery cost compared
with the static one is (θd − θs) ≤ C̄arc. Based on Lemmas 1 and 2, when I = � T

τ
�,

the dynamic checkpointing is equivalent to the static solution. That is, θd = θs ,
and then both the saved archiving cost and the extra recovery cost are 0. Otherwise,
(� T

τ
� − I ) ≥ 1, which can offset the upper bound of the extra recovery cost C̄arc.

Then we have the claim. 	


4 Prioritized checkpointing

In this section, we present our prioritized checkpointing method, which is developed
on top of dynamic checkpointing to further reduce I/O costs of archiving data, but only
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Fig. 3 Failure recovery of Shortest Paths

suitable for some algorithms mentioned in [20], like Shortest Paths and connected
components.

4.1 Direct failure recovery for Shortest Paths

An interesting phenomenon for some algorithms is that the computation can be
restarted from any point upon failures. We demonstrate it in Fig. 3, taking Shortest
Paths as an example. Given a weighted directed graph and a source vertex v1, at the 1st
iteration, v1’s direct neighbors, v2 and v3, are updated. Suppose that a failure occurs
at the 2nd iteration and v3 is lost. To recover failures, we can directly load lost data
only and then initialize them again to repeat computations for them. Meanwhile, data
on surviving machines will be preserved (e.g., v2) and their updates will keep going
when recovering lost data (e.g., v2 → (v4, v5)). Even so, we can still get the same
computing results with that in failure-free execution. Some other algorithms, such as
connected components, also fall into this category.

Schelter et al. [20] utilize this property to tolerate failures without checkpoints. But
in this paper, we use it to design a prioritized checkpointing with nearly zero archiving
cost because only selected vertices are saved. Meanwhile, our solution is supposed to
recover failures more efficiently since some lost data are replaced with checkpoints,
instead of initial values.

4.2 Archiving data with priority

The only difference between dynamic checkpointing and our prioritized solution is
that when isCheckpoint() returns “TRUE”, only selected vertices, not all of them,
are archived as a checkpoint. That reduces C̄arc and then potentially increases the
checkpointing frequency, as shown in Fig. 4. However, based on Theorem 1, the overall
I/O-efficiency is still better than the static solution. Upon failures, only replacements
for failed machines (i.e., tasks) will roll back to the last available checkpoint. Lost
vertices are initialized to checkpoint values if they have been selected and archived,
or initial states. After that, all machines continue the computations.

Even though not all data are archived, compared with the dynamic solution, the
recovery is potentially accelerated due to two reasons. First, surviving machines will
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Fig. 4 Illustration of prioritized
checkpointing

not load checkpoints, which saves I/O accesses and network bandwidth. Second, data
on surviving machines will not be rolled back, that avoids re-computation cost and can
speed up the recovery of lost data by broadcasting their values. In Sect. 4.3, we will
discuss how to select important vertices when performing checkpointing, to further
improve the recovery efficiency.

4.3 Priority metric

This paper computes vertex priority by considering its number of performing updates
and degree (i.e., |Γ (vi )|). This is because once a vertex is updated, it will broadcast its
new value to out-neighbors based on Eq. (3). Thus, the recovery workload is roughly
proportional to the product of the two parameters. Equation (6) shows the priority of vi
at the t th iteration. Here, upd(vi , x) is 1 if vi is updated at the x th iteration. Otherwise,
it’s zero. Before launching a new checkpoint, all tasks in the current graph processing
job will sort their local vertex priorities and then select top-K ones as checkpoint. The
priority queue size K is given by users. With its increase, the prioritized checkpointing
eventually degrades into the dynamic solution. We will experimentally discuss its
impact in Sect. 5.6.

pri(vi , t) = |Γ (vi )| ·
t∑

x=1

upd(vi , x). (6)

5 Evaluation

This section evaluates our proposals and analyzes the performance on many real-world
graphs as listed in Table 1.

5.1 Experimental setup

Solutions tested in experiments For simplicity, our proposals described in Sects. 3
and 4 are indicated by Dyn-CK (checkpointing with dynamic interval) and Pri-CK
(checkpointing with priority), respectively. We use the state-of-the-art technique [29]
as a Baseline. That is, vertices are archived periodically with a static interval. All
of the three solutions are implemented on top of a recently published system called
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Table 1 Real graph datasets

Graph Vertices Edges Degree Type

LiveJa 4,847,571 68,028,541 14.24 Social Network in LiveJournal

Wikib 5,716,808 130,158,845 22.77 Web Graph of Wikipedia

Roadc 23,947,132 58,332,307 2.44 Full USA Road Network

Hollyd 2,180,759 229,181,085 105.09 Social Network of movie actors in Hollywood

UKe 18,520,486 298,113,762 16.10 Web Graph from a crawl of the .uk domain

a https://snap.stanford.edu/data/soc-LiveJournal1.html
b http://haselgrove.id.au/wikipedia.htm
c http://www.dis.uniroma1.it/challenge9/download.shtml
d http://law.di.unimi.it/webdata/hollywood-2011/
e http://law.di.unimi.it/webdata/uk-2002/

HybridGraph [26], in order to present an end-to-end performance comparison. Exper-
iments are run using HybridGraph’s memory-resident engine, but our ideas can also
work for its disk-resident engine. Note that existing parallel methods [23,28] are not
involved in our study as they are complementary to our Dyn-CK and Pri-CK.

Experimental clusterWe run all of our experiments on the Amazon EC2 cluster using
c3.2xlarge instances (8 virtual cores, 15 GB of RAM, and 30 GB HDDs) running
Ubuntu Server 14.04. The cluster consists of 5 instances with an additional one as
Master because HybridGraph employs a typical master-slave framework, like Pregel.

Algorithms and datasets Dyn-CK and Pri-CK can work for many algorithms, like
Baseline. However, here we conduct testing using Simulating Advertisements and
Shortest Paths as representatives (described in Sect. 2.1). For some well-known algo-
rithms, like PageRank, all vertices are typically involved in updates at every iteration.
The underlying computation cost is usually bigger than the archiving overhead and the
computation workload will not change with iterations. In this case, Dyn-CK is equiva-
lent to Baseline based on the cost-analysis model in Sect. 2.3 and hence we ignore its
experiment results. Connected components, as another widely used algorithm, exhibits
the varied computation workload because the number of involved vertices gradually
decreases with iterations. But the workload of Shortest Paths will increase first and
then decrease, which is more complicated than connected components. We thereby
use Shortest Paths instead of connected components. Simulating Advertisements
is chosen as an example which cannot be supported by Pri-CK.

All tests are done over real graphs in numerous applications, including social net-
works, road networks, and web graphs, in order to evaluate the effectiveness of our
proposals in different real-world scenarios. Detailed dataset descriptions are given in
Table 1. For Shortest Paths, each edge is assigned a random number between 0 and
1 as its weight.

Failure simulation Failure is simulated by setting one task failed manually at some
iteration. Because we expect Dyn-CK and Pri-CK to reduce the volume of archived
data as much as possible, this may increase the recovery cost to recompute lost data,
especially when the failure occurs at the end of computations. Thus, we evaluate our
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Fig. 5 The failure-free performance of different solutions

proposals in the worst case. That is, without loss of generality, the failure location is
given as 0.9 · T , where T is the total number of iterations in failure-free execution and
we can get its value by running algorithms beforehand.

Other settings Unless otherwise specified, the checkpointing interval is set as 5 and
the priority queue size used in Pri-CK is initialized as 0.2|V |, based on the experience
of [8,29,32]. HDFS in hadoop-0.20.2 [2] is used as the distributed file system to store
archived data (64 MB per block, 3 replications).

5.2 Data archiving overheads

We runSimulating Advertisements andShortest Paths on all graphs in failure-free
execution to evaluate the I/O-efficiency of our proposals in comparison withBaseline.
In particular, we only show the statistics of the first 200 iterations for the Road graph
for simplicity, even though it requires thousands of iterations to fully converge due to
its extremely large diameter.

Figure 5 plots the runtime under different checkpointing policies. “Free-CK” means
no data is archived during computations. As the sub-figures show, Dyn-CK always
performs better than Baseline. Prioritized archiving mechanism creates an additional
gap between Dyn-CK and Pri-CK but the impact is less significant on runtime.

Generally, the speedup of Dyn-CK/Pri-CK compared with Baseline is up to
8.5x/20.3x (Shortest Paths onRoad), butSimulatingAdvertisements onHolly has
the least improvement.Holly is a social network with high fan-out. Expensive message
processing dominates the overall runtime and hence the overhead of archiving vertices
can be negligible. Also, the perfect reachability leads to a fast convergence, especially
for Simulating Advertisements. That means only a few checkpoints will be saved
even for Baseline, which largely limits the impact of our proposals on reducing the
volume of archived data. In contrast, the road network Road exhibits a large diameter,
which usually requires a lot of iterations to converge. In particular, at each iteration,
the underlying workload is tiny due to the low degree. In this case, archiving vertices
is the dominant cost and then changing interval and prioritized selection are curial.

We now present the performance analysis in more detail. Figs. 6 and 7 show the
numbers of archived checkpoints and vertices. Of course Dyn-CK significantly drops
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Fig. 6 The number of checkpoints archived in failure-free execution. (a) Simulating Advertisements.
(b) Shortest Paths
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Fig. 7 The number of vertices archived in failure-free execution. (a) Simulating Advertisements.
(b) Shortest Paths

the frequency of performing checkpoints. To explain that, we demonstrate the runtime
per iteration on theWiki graph in Fig. 8. For our both example algorithms, the underly-
ing computation cost of every 5 iterations is much smaller than that caused by archiving
all vertices. Our cost-analysis model thereby can change the interval dynamically to
archive data using a large interval. Accordingly, the number of archived vertices can
be reduced, which improves the overall performance.

An interesting observation we can find is that in all cases excludingShortest Paths
on the UK graph, Pri-CK has the same number of checkpoints with Baseline. The
reason is that the sum of five iterations’ costs is usually more than that of prioritized
checkpointing. Even so, the total number of archived vertices is still smaller than that
in Dyn-CK benefitting from the prioritized selection.

5.3 Recovery runtime and overall runtime

To show the impact of changing interval (Dyn-CK) and prioritized selection (Pri-
CK), Figs. 9 and 10 plot the recovery runtime and overall runtime, respectively, when
encountering a machine failure at the end of computations.
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Fig. 8 Runtime per iteration in failure-free execution (on the Wiki graph)
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Fig. 9 Recovery runtime when one machine fails at the end of computations

Generally,Dyn-CK takes more time (shown in Fig. 9) thanBaseline to recover lost
workloads since the former archives fewer vertices. However, from the perspective of
overall runtime (shown in Fig. 10), Dyn-CK beats Baseline in all cases. This can be
explained that archiving vertices costs more time than re-executing some lightweight
underlying iterative computations, and Dyn-CK can make a smart decision to initiate
a checkpoint based on its cost-analysis model.

Pri-CK can further reduce the volume of archived data, but its recovery runtime
is slightly more than that of Dyn-CK in many cases (shown in Fig. 9). As a result,
Pri-CK usually beats Dyn-CK in terms of overall runtime (shown in Fig. 10). We
explain it from three perspectives. First, our priority computing model can smartly
archive the most important vertices based on their re-computation costs, which reduces
the performance degradation in recovery. Second, when performing recovery, data on
surviving machines will not be rolled back asBaseline andDyn-CK. That confines re-
computations to data on failed machines only, which is efficient. Also, these surviving
vertices can accelerate the recovery processing of lost data by broadcasting their values
as reported in [25]. The exception is Shortest Paths on UK. Fig. 10 shows that Dyn-
CK beats Pri-CK. This reason is that although Pri-CK archives fewer vertices (I/O
costs) than Dyn-CK (Fig. 7), it largely increases the recovery cost as shown in Fig. 9.
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Fig. 10 Overall runtime when a machine fails at the end of computations. (a)SimulatingAdvertisements.
(b) Shortest Paths

5.4 Impact of checkpointing interval

Now we explore the impact of checkpointing interval on overall runtime when failure
occurs at different locations. Before showing results, we introduce some symbols.
“F=12” indicates that one machine fails at the 12th iteration. In addition, the “+∞”
interval means we disable the checkpointing function, i.e., no data is archived. This
suite of experiments is performed using a social network LiveJ and a web graph Wiki.

The performance of Baseline largely depends on the combination of specific
algorithms, failure locations, and datasets. Specifically, in Fig. 11, the optimal check-
pointing interval varies from 5 to 6, when changing the failure location from 12 to
13. On the other hand, both Figs. 11(b) and 12(b) show that on the Wiki graph, users
are supposed to disable checkpointing since recomputing from scratch performs best.
While, on the LiveJ graph, especially for Shortest Paths, disabling checkpointing
leads to suboptimal performance. Obviously, it is a great challenge for users to choose
a reasonable checkpointing interval empirically.

Different from Baseline, a quite large range of interval values, such as 1–5, can
allow ourDyn-CK to work well. Furthermore,Dyn-CK always runs faster than recom-
puting from scratch (i.e., the interval is +∞).

5.5 Impact of priority queue size

Table 2 reports the overall runtime when encountering a failure under different priority
queue sizes in Pri-CK. The runtime slightly increases because archiving more data
offsets the gain achieved by fast recovery. Zhang et al. draw the similar conclusion in
prioritized computations [32]. Thus, we use 0.2|V | in experiments.

5.6 Impact of the number of failed machines

We finally explore the features of all solutions when varying the number of failed
machines. A new compared solution called “Optimistic” [20] is added since it utilizes
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Fig. 11 The impact of checkpointing intervals (Simulating Advertisements)
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Fig. 12 The impact of checkpointing intervals (Shortest Paths)

Table 2 The impact of priority
queue size (seconds)

Graph 0.2|V | 0.4|V | 0.6|V | 0.8|V | |V |(Dyn-CK)

LiveJ 43.56 48.84 49.32 49.85 61.58

Wiki 91.25 99.27 102.39 104.30 106.94

the same property (Sect. 4.1) for failure recovery as our Pri-CK, but no checkpoint
is archived. We test Optimistic here because its performance depends on how many
workloads are preserved. All tests are performed using Shortest Paths since Pri-CK
and Optimistic cannot work for Simulating Advertisements. Using the same setting
in Fig. 10, Fig. 13 reports the overall runtime.

Not surprisingly, the performance of Baseline and Dyn-CK is not sensitive to the
number of failed machines because both of them replace vertices on every machine
with the most recent available checkpoint. By contrast, with the increase of the number
of failed machines, the performance ofPri-CK andOptimistic degrades. The reason is
that the two methods try to utilize data on surviving machines to recover lost workloads.
Apparently, more surviving machines means more data are preserved and then the
recovery is faster.
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Fig. 13 The impact of the number of failed machines (Shortest Paths)

In particular, Optimistic is slightly better than our Pri-CK if a small num-
ber of machines are failed because the former does not archive any checkpoint
data. However, when increasing the number of failed machines, the performance
of Optimistic degrades seriously since most of data are lost. By contrast, ben-
efitting from the priority checkpointing, the overall runtime of Pri-CK increases
slightly.

6 Related work

Fault-tolerance is a core component for iterative graph processing systems. This section
first lists some representative graph systems and then discusses the applicability of
our proposals. Afterwards, we summarize fault-tolerance techniques used in today’s
systems to distinguish our work from them.

6.1 Large-scale graph processing systems

The widely used iterative graph algorithms and the rapid increase of data volume
have attracted both industry and academia to develop highly scalable graph systems.
Since Pregel [17] by Google is proposed as an early framework, a lot of variants
have been developed to enhance performance from perspectives of graph partition-
ing [6,10], dynamic load balance [15,19,22], asynchronous computation [10,27,33],
block-centric vertex update [24,30], and I/O-efficiency [5,26,34]. Besides, some
general-purpose dataflow frameworks [1,3], can also support iterative graph min-
ing.

Our proposals can be easily integrated into most of systems above, excluding asyn-
chronous variants since they remove the synchronous barrier. On the other hand, the
priority idea has been used to accelerate underlying graph computations in [32]. But
in this paper, we employ it to speed up archiving data. Also, our priority is computed
automatically, rather than using a user-specified function [32].
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6.2 Fault-tolerance techniques

In systems mentioned above, efforts on fault-tolerance basically fall into three cate-
gories, and we introduce them as follows.

Checkpoint-based solutions As an early fault-tolerance technique, checkpointing
proposed in Pregel has been widely used in many systems due to its simplicity. There
exist two important branches to improve its performance in terms of archiving and
recovering operations, respectively.

From the perspective of archiving data, Spark [3] first separates static data (i.e.,
edges) and dynamic data (i.e., vertices and messages), to reduce archived data to the
latter only. Xue et al. further reduce it to vertices only by decomposing the computation
logic into vertex update and message generation [29]. In this way, messages can be
re-generated based on archived vertex states. However, it only works for graphs with
extremely large degree. This is because in this scenario, the time of archiving vertices
occupies only a small proportion of the overall runtime which is mainly dominated by
sending messages along a large number of edges. On the other hand, Xu et al. focus
on writing checkpoint along with the generation or computation of vertices [28]. This
unblocking approach can partially overlap CPU and I/O operations to reduce the idle
time. But it does not work well as expected based on reported experimental results
in many cases. This is largely because that the data generating/consuming rate is
usually greater than the checkpoint writing rate, which limits the effectiveness of the
overlapping mechanism. Different from these techniques above, our proposals can
significantly drop the volume of archived data by smartly deciding the checkpointing
interval and selecting vertices in priority.

Another research line is to improve the recovery efficiency. To this end, recom-
putation workload is confined to lost data on failed machines, and data on surviving
machines will not be rolled back [17,23,28]. Furthermore, the recovery workload
can be re-assigned onto multiple machines to be performed in parallel [23,28]. Since
our work only focuses on optimizing the archiving overhead, these techniques are
complementary to our proposals.

Besides, some checkpointing variants can be performed asynchronously by remov-
ing the global barrier [16,25], which are tailored for asynchronous engines. It is beyond
the scope of this paper since most systems work in synchronous manner and the gains
due to asynchronous engines are not so much in many cases [13].

Lineage-based solutions Spark [3] employs a lineage method to track the depen-
dency of data [31], instead of recording data themselves. Failures can be recovered by
recomputing based on lineage. Since lineage as metadata is much smaller than graph
states, it can significantly save storage space and network bandwidth. Nevertheless,
for iterative algorithms, checkpointing is still required to cut a long lineage, in order
to accelerate recovery.

Reactive solutions Reactive recovery solutions can directly recover failures without
checkpointing. That reduces the impact on failure-free execution to be zero, and hence
attracts a lot of attention. This can be achieved by replicating data [7,18], but memory
resources may be quickly exhausted [34]. Another implementation is to carefully
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design an algorithm-specified compensation function [20], which is usually a nontrivial
task [28].

7 Conclusion

This paper proposes two new adaptive and I/O-efficient checkpointing solutions to
tolerate failures in Pregel-like systems. Different from existing work, our solution can
dynamically change the checkpointing interval based a cost-analysis model and/or
archive selected vertices by computing their priorities. In experiments, we show that
our proposals obviously outperform the up-to-date techniques.
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